334 research outputs found

    oHSV Genome Editing by Means of galK Recombineering

    Get PDF
    open8noThis work was supported by European Research Council (ERC) Advanced Grant number 340060, VII framework program to G. C.-F., by RFO (University of Bologna) to L.M. and T.G, and by Fondi Pallotti to T.G.Since the cloning of the herpes simplex virus (HSV) genome as BAC (bacterial artificial chromosome), the genetic engineering of the viral genome has become readily feasible. The advantage is that the modification of the animal virus genome is carried out in bacteria, with no replication or production of viral progeny, and is separated from the reconstitution or regeneration of the recombinant virus in mammalian cells. This allows an easy engineering of essential genes, as well. Many technologies have been developed for herpesvirus BAC engineering. In our hands the most powerful is galK recombineering that exploits a single marker (galK) for positive and negative selection and PCR amplicons for seamless modification in the desired genome locus. Here we describe the engineering of the HSV recombinant BAC 115 by the insertion of a heterologous cassette for the expression of murine interleukin 12 (mIL12) in the intergenic sequence between US1 and US2 ORFs.embargoed_20201017Laura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-FiumeLaura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-Fium

    Dynamics and freeze-out of hadron resonances at RHIC

    Get PDF
    Yields, rapidity and transverse momentum spectra of Δ++(1232)\Delta^{++}(1232), Λ(1520)\Lambda(1520), Σ±(1385)\Sigma^\pm(1385) and the meson resonances K0(892)K^0(892), Φ\Phi, ρ0\rho^0 and f0(980)f_0(980) are predicted. Hadronic rescattering leads to a suppression of reconstructable resonances, especially at low pp_\perp. A mass shift of the ρ\rho of 10 MeV is obtained from the microscopic simulation, due to late stage ρ\rho formation in the cooling pion gas.Comment: Proceedings of the Strange Quark Matter 2003, eprint version differs from published versio

    Dilepton production in pp and CC collisions with HADES

    Get PDF
    Dilepton production has been measured with HADES, the "High Acceptance DiElectron Spectrometer". In pp collisions at 2.2GeV kinetic beam energy, exclusive eta production and the Dalitz decay eta -> gamma e+e- has been reconstructed. The electromagnetic form factor is well in agreement with existing data. In addition, an inclusive e+e- spectrum from the C+C reaction at 2AGeV is presented and compared with a thermal model.Comment: 11 pages, 3 figures, proceedings of the IVth International Conference on Quarks and Nuclear Physics, Madrid, June 5th-10th, submitted to Eur.Phys.J.

    Anoxia- and hypoxia-induced expression of LDH-A* in the Amazon Oscar, Astronotus crassipinis

    Get PDF
    Adaptation or acclimation to hypoxia occurs via the modulation of physiologically relevant genes, such as erythropoietin, transferrin, vascular endothelial growth factor, phosphofructokinase and lactate dehydrogenase A. In the present study, we have cloned, sequenced and examined the modulation of the LDH-A gene after an Amazonian fish species, Astronotus crassipinis (the Oscar), was exposed to hypoxia and anoxia. In earlier studies, we have discovered that adults of this species are extremely tolerant to hypoxia and anoxia, while the juveniles are less tolerant. Exposure of juveniles to acute hypoxia and anoxia resulted in increased LDH-A gene expression in skeletal and cardiac muscles. When exposed to graded hypoxia juveniles show decreased LDH-A expression. In adults, the levels of LDH-A mRNA did not increase in hypoxic or anoxic conditions. Our results demonstrate that, when given time for acclimation, fish at different life-stages are able to respond differently to survive hypoxic episodes

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore