1,125 research outputs found

    Inferring the neutron star equation of state from binary inspiral waveforms

    Get PDF
    The properties of neutron star matter above nuclear density are not precisely known. Gravitational waves emitted from binary neutron stars during their late stages of inspiral and merger contain imprints of the neutron-star equation of state. Measuring departures from the point-particle limit of the late inspiral waveform allows one to measure properties of the equation of state via gravitational wave observations. This and a companion talk by J. S. Read reports a comparison of numerical waveforms from simulations of inspiraling neutron-star binaries, computed for equations of state with varying stiffness. We calculate the signal strength of the difference between waveforms for various commissioned and proposed interferometric gravitational wave detectors and show that observations at frequencies around 1 kHz will be able to measure a compactness parameter and constrain the possible neutron-star equations of state.Comment: Talk given at the 12th Marcel Grossman Meeting, Paris, France, 12-18 Jul 200

    Cooperative games with overlapping coalitions

    No full text
    In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitions—or overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure

    The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean

    Get PDF
    Changes in temperature due to variability in meteorology and climate change are expected to significantly impact atmospheric composition. The Mediterranean is a climate sensitive region and includes megacities like Istanbul and large urban agglomerations such as Athens. The effect of temperature changes on gaseous air pollutant levels and the atmospheric processes that are controlling them in the Eastern Mediterranean are here investigated. The WRF/CMAQ mesoscale modeling system is used, coupled with the MEGAN model for the processing of biogenic volatile organic compound emissions. A set of temperature perturbations (spanning from 1 to 5 K) is applied on a base case simulation corresponding to July 2004. The results indicate that the Eastern Mediterranean basin acts as a reservoir of pollutants and their precursor emissions from large urban agglomerations. During summer, chemistry is a major sink at these urban areas near the surface, and a minor contributor at downwind areas. On average, the atmospheric processes are more effective within the first 1000 m above ground. Temperature increases lead to increases in biogenic emissions by 9±3% K<sup>−1</sup>. Ozone mixing ratios increase almost linearly with the increases in ambient temperatures by 1±0.1 ppb O<sub>3</sub> K<sup>−1</sup> for all studied urban and receptor stations except for Istanbul, where a 0.4±0.1 ppb O<sub>3</sub> K<sup>−1</sup> increase is calculated, which is about half of the domain-averaged increase of 0.9±0.1 ppb O<sub>3</sub> K<sup>−1</sup>. The computed changes in atmospheric processes are also linearly related with temperature changes

    On the Efficiency of All-Pay Mechanisms

    Get PDF
    We study the inefficiency of mixed equilibria, expressed as the price of anarchy, of all-pay auctions in three different environments: combinatorial, multi-unit and single-item auctions. First, we consider item-bidding combinatorial auctions where m all-pay auctions run in parallel, one for each good. For fractionally subadditive valuations, we strengthen the upper bound from 2 [Syrgkanis and Tardos STOC'13] to 1.82 by proving some structural properties that characterize the mixed Nash equilibria of the game. Next, we design an all-pay mechanism with a randomized allocation rule for the multi- unit auction. We show that, for bidders with submodular valuations, the mechanism admits a unique, 75% efficient, pure Nash equilibrium. The efficiency of this mechanism outperforms all the known bounds on the price of anarchy of mechanisms used for multi-unit auctions. Finally, we analyze single-item all-pay auctions motivated by their connection to contests and show tight bounds on the price of anarchy of social welfare, revenue and maximum bid.Comment: 26 pages, 2 figures, European Symposium on Algorithms(ESA) 201

    Effects on surface atmospheric photo-oxidants over Greece during the total solar eclipse event of 29 March 2006

    Get PDF
    International audienceThis study investigates the effects of the total solar eclipse of 29 March 2006 on surface air-quality levels over Greece based on observations at a number of sites in conjunction with chemical box modelling and 3-D air-quality modelling. Emphasis is given on surface ozone and other photooxidants at four Greek sites Kastelorizo, Finokalia (Crete), Pallini (Athens) and Thessaloniki, which are located at gradually increasing distances from the path of the eclipse totality and are characterized by different air pollution levels. The eclipse offered the opportunity to test our understanding of air pollution build-up and the response of the gas-phase chemistry of photo-oxidants during a photolytical perturbation using both a photochemical box model and a regional air-quality offline model based on the modeling system WRF/CAMx. At the relatively unpolluted sites of Kastelorizo and Finokalia no clear impact of the solar eclipse on surface O3, NO2 and NO concentrations can be deduced from the observations and model simulations as the calculated changes in net ozone production rates between eclipse and non eclipse conditions are rather small compared to the ozone variability and hence the solar eclipse effects on ozone can be easily masked by transport. At the polluted sites of Thessaloniki and Pallini, the solar eclipse effects on O3, NO2 and NO concentrations are clearly revealed from both the measurements and 3-D air-quality modeling with the net effect being a decrease in O3 and NO and an increase in NO2 as NO2 formed from the reaction of O3 with NO while at the same time NO2 is not efficiently photolysed. It is evident from the 3-D air quality modeling over Greece that the maximum effects of the eclipse on O3, NO2 and NO are reflected at the large urban agglomerations of Athens, and Thessaloniki where the maximum of the emissions occur

    New algorithms for approximate Nash equilibria in bimatrix games

    Get PDF
    We consider the problem of computing additively approximate Nash equilibria in non-cooperative two-player games. We provide a new polynomial time algorithm that achieves an approximation guarantee of 0.36392. Our work improves the previously best known (0.38197¿+¿e)-approximation algorithm of Daskalakis, Mehta and Papadimitriou [6]. First, we provide a simpler algorithm, which also achieves 0.38197. This algorithm is then tuned, improving the approximation error to 0.36392. Our method is relatively fast, as it requires solving only one linear program and it is based on using the solution of an auxiliary zero-sum game as a starting point. The first author was supported by NWO. The second and third author were supported by the EU Marie Curie Research Training Network, contract numbers MRTN-CT-2003-504438-ADONET and MRTN-CT-2004-504438-ADONET respectively

    Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    Get PDF
    BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog. CONCLUSIONS: We had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD
    corecore