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The properties of neutron star matter above nuclear density are not precisely known.

Gravitational waves emitted from binary neutron stars during their late stages of in-

spiral and merger contain imprints of the neutron-star equation of state. Measuring

departures from the point-particle limit of the late inspiral waveform allows one to mea-

sure properties of the equation of state via gravitational wave observations. This and a

companion talk by J. S. Read reports a comparison of numerical waveforms from simu-

lations of inspiraling neutron-star binaries, computed for equations of state with varying

stiffness. We calculate the signal strength of the difference between waveforms for var-

ious commissioned and proposed interferometric gravitational wave detectors and show

that observations at frequencies around 1 kHz will be able to measure a compactness

parameter and constrain the possible neutron-star equations of state.

In simulations of the late inspiral and merger of binary neutron-star systems, one

typically specifies an equation of state (EOS) for the matter, performs a numerical

evolution and extracts the gravitational waveforms produced in the inspiral. In

this talk we report work on the inverse problem: if gravitational waves from an

inspiraling neutron-star binary are observed, can they be used to infer the bulk

properties of neutron star matter and, if so, with what accuracy? To answer this

question, we performed a number of simulations,1–3 using the evolution and initial

data codes of Shibata and Uryū, while systematically varying the stiffness of a

parameterized EOS. This parameterized EOS was previously developed in Refs.

3,4 and is of piecewise polytropic form, p(ρ) = Kiρ
Γi in a set of three intervals

ρi−1 6 ρ 6 ρi in rest-mass density, with the constants Ki determined by requiring

continuity on each dividing ρi and the energy density determined by the first law

of thermodynamics. As described in Refs. 3,4, the nonpolytropic EOS of the crust

(0 6 ρ 6 ρ0) as well as the dividing densities ρ1, ρ2 are fixed while the parameters

{p1 ≡ p(ρ1),Γ1,Γ2,Γ3} are generally varied. In this first set of simulations we set

Γ1 = Γ2 = Γ3 = 3 and change the EOS stiffness by varying only p1, while keeping

the Schwarzschild mass of each neutron star fixed at 1.35M⊙. The choice of EOS

parameter varied in this work is motivated by the fact that neutron-star radius is

closely tied to the pressure at density not far above nuclear equilibrium density.5
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Variation of the adiabatic exponents is the scope of a next set of simulations.

We compared the gravitational waveforms from the simulations to point-particle

waveforms (see, for example, Ref. 6) and calculated the signal strength of the dif-

ference in waveforms using the sensitivity curves of commissioned and proposed

gravitational wave detectors. We find that, as the stars approach their final plunge

and merger, the gravitational phase accumulates more rapidly for larger values of

p1 or smaller values of the neutron-star compactness (the ratio of the neutron-star

mass to its radius). The waveform analysis indicates that realistic EOS will result

in waveforms that are distinguishable from point-particle inspiral at an effective

distance (the distance to an optimally oriented and located system that would pro-

duce an equivalent waveform amplitude) of D0 = 100 Mpc or less with gravitational

wave detectors with the sensitivity of broadband Advanced LIGO. We further esti-

mate that observations of this sensitivity will be able to constrain p1 for a source

at effective distance D with an accuracy of δp1/p1 ∼ 0.2D/D0. Related estimates

of radius measurability show that such observations can determine the radius to an

accuracy of δR ∼ 1 km D/D0. These first estimates neglect other details of internal

structure which are expected to give smaller tidal effect corrections. This is the

subject of work underway, which involves improving the accuracy of the estimates

with variation of the adiabatic exponents, determination of surfaces in the equa-

tion of state (EOS) parameter space associated with a given departure from the

waveform of point-particle inspiral and numerical simulation of more orbits in the

late inspiral. Also, the results mentioned above do not take into account multiple

detectors, parameter correlation, or multiple observations. The latter possibility is

briefly discussed below.

In the calculations mentioned above we estimated the error σ0 in measuring

an EOS parameter (such as p1 or, more precisely, a related parameter that labels

surfaces of constant departure from point-particle inspiral) from observation of one

event at a reference effective distance D0 = 100 Mpc. Here we wish to estimate the

effect of multiple observations on the measurement accuracy. If Ni identical events,

each with measurement uncertainty σi, occurred at the same effective distance Di,

then the overall uncertainty (standard error) of the combined measurement would

be σi/
√
Ni. However, events do not occur at the same effective distance. Instead, we

shall assume that events are homogeneously distributed in a sphere of effective ra-

dius Dmax ≃ 300 Mpc. (A uniform probability distribution of events in space is also

uniform in effective space.) We divide this sphere into I shells of effective distance

Di = Dmax(i− 1

2
)/I with i = 1, ..., I and assume that detections will only be counted

for sources with effective distance smaller than Dmax. Because uncertainty scales

linearly with effective distance, we have σi = σ0Di/D0. Combining measurements

at different distances will then result in an overall uncertainty σ given by

1

σ2
=

I
∑

i=1

Ni

σ2

i

=
D2

0

σ2

0

I
∑

i=1

Ni

D2

i

(1)

where Ni is the number of events in the i-th shell. Note that the Ni are random
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variables, so σ is also a random variable with some probability distribution. The

total number of events in a given year,

N =

I
∑

i=1

Ni, (2)

is itself a random variable and is Poisson-distributed around the rate of events

R ≡ 〈N〉 (average number of events per year). The probability distribution function

P(σ|R) of σ given R, and its moments 〈σ〉, 〈σ2〉 etc., are more easily computed via

Monte-Carlo simulation rather than analytically. However, an analytical estimate

for the moment 〈σ−2〉 can be obtained by assuming a constant density n of events

per year per unit effective volume and converting the sums (2) and (1) to integrals:

〈N〉 =
∫ Dmax

0

4πnD2dD =
4πn

3
D3

max (3)

〈

1

σ2

〉

=
D2

0

σ2

0

∫ Dmax

0

1

D2
4πnD2dD =

D2
0

σ2

0

4πnDmax (4)

Eliminating n from eqs. (3) and (4) yields the simple formula

〈σ−2〉−1/2 = σ0

Dmax

D0

(3R)−1/2 (5)

Our Monte-Carlo simulations confirm that, while 〈σ〉, 〈σ2〉1/2 and other moments do

not in general scale proportionately to R−1/2 for fixed Dmax, the moment 〈σ−2〉−1/2

scales exactly as dictated by eq. (5). This formula indicates that, for example, three

events randomly distributed in a sphere of effective radius Dmax = 3D0 give the

same “average” uncertainty 〈σ−2〉−1/2 = σ0 as one event at effective distance D0.

Although the above calculation was done for measurement of a single parameter,

it can be straightforwardly generalized for more parameters, by replacing the un-

certainty σ2 with a Fisher information matrix. As noted above, we have restricted

consideration to neutron stars with a single fixed mass. Independent variation of

the mass of each companion is the subject of future work.
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