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Abstract. We study the inefficiency of mixed equilibria, expressed as
the price of anarchy, of all-pay auctions in three different environments:
combinatorial, multi-unit and single-item auctions. First, we consider
item-bidding combinatorial auctions where m all-pay auctions run in
parallel, one for each good. For fractionally subadditive valuations, we
strengthen the upper bound from 2 [22] to 1.82 by proving some struc-
tural properties that characterize the mixed Nash equilibria of the game.
Next, we design an all-pay mechanism with a randomized allocation rule
for the multi-unit auction. We show that, for bidders with submodular
valuations, the mechanism admits a unique, 75% efficient, pure Nash
equilibrium. The efficiency of this mechanism outperforms all the known
bounds on the price of anarchy of mechanisms used for multi-unit auc-
tions. Finally, we analyze single-item all-pay auctions motivated by their
connection to contests and show tight bounds on the price of anarchy of
social welfare, revenue and maximum bid.

1 Introduction

It is a common economic phenomenon in competitions that agents make irre-
versible investments without knowing the outcome. All-pay auctions are widely
used in economics to capture such situations, where all players, even the losers,
pay their bids. For example, a lobbyist can make a monetary contribution in or-
der to influence decisions made by the government. Usually the group invested
the most increases their winning chances, but all groups have to pay regardless of
the outcome. In addition, all-pay auctions have been shown useful to model rent
seeking, political campaigns and R&D races. There is a well-known connection
between all-pay auctions and contests [21]. In particular, the all-pay auction can
be viewed as a single-prize contest, where the payments correspond to the effort
that players make in order to win the competition.

In this paper, we study the efficiency of mixed Nash equilibria in all-pay
auctions with complete information, from a worst-case analysis perspective, us-
ing the price of anarchy [16] as a measure. As social objective, we consider the
social welfare, i.e. the sum of the bidders’ valuations. We study the equilibria
induced from all-pay mechanisms in three fundamental resource allocation sce-
narios; combinatorial auctions, multi-unit auctions and single-item auctions.

In a combinatorial auction a set of items are allocated to a group of selfish
individuals. Each player has different preferences for different subsets of the items
and this is expressed via a valuation set function. A multi-unit auction, can be
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considered as an important special case, where there are multiple copies of a
single good. Hence the valuations of the players are not set functions, but depend
only on the number of copies received. Multi-unit auctions have been extensively
studied since the seminal work by Vickrey [23]. As already mentioned, all-pay
auctions have received a lot of attention for the case of a single item, as they
model all-pay contests and procurements via contests.

1.1 Contribution

Combinatorial Auctions. Our first result is on the price of anarchy of simultane-
ous all-pay auctions with item-bidding that was previously studied by Syrgkanis
and Tardos [22]. For fractionally subadditive valuations, it was previously shown
that the price of anarchy was at most 2 [22] and at least e/(e − 1) ≈ 1.58 [8].
We narrow further this gap, by improving the upper bound to 1.82. In order to
obtain the bound, we come up with several structural theorems that characterize
mixed Nash equilibria in simultaneous all-pay auctions.

Multi-unit Auctions. Our next result shows a novel use of all-pay mechanisms
to the multi-unit setting. We propose an all-pay mechanism with a randomized
allocation rule inspired by Kelly’s seminal proportional-share allocation mech-
anism [15]. We show that this mechanism admits a unique, 75% efficient pure
Nash equilibrium and no other mixed Nash equilibria exist, when bidders’ valu-
ations are submodular. As a consequence, the price of anarchy of our mechanism
outperforms all current price of anarchy bounds of prevalent multi-unit auctions
including uniform price auction [18] and discriminatory auction [14], where the
bound is e/(e− 1) ≈ 1.58.

Single-item Auctions. Finally, we study the efficiency of a single-prize contest
that can be modeled as a single-item all-pay auction. We show a tight bound on
the price of anarchy for mixed equilibria which is approximately 1.185. By follow-
ing previous study on the procurement via contest, we further study two other
standard objectives, revenue and maximum bid. We evaluate the performance of
all-pay auctions in the prior-free setting, i.e. no distribution over bidders’ val-
uation is assumed. We show that both the revenue and the maximum bid of
any mixed Nash equilibrium are at least as high as v2/2, where v2 is the second
highest valuation. In contrast, the revenue and the maximum bid in some mixed
Nash equilibrium may be less than v2/2 when using reward structure other than
allocating the entire reward to the highest bidder. This result coincides with the
optimal crowdsourcing contest developed in [6] for the setting with prior distri-
butions. We also show that in conventional procurements (modeled by first-price
auctions), v2 is exactly the revenue and maximum bid in the worst equilibrium.
So procurement via all-pay contests is a 2-approximation to the conventional
procurement in the context of worse-case equilibria.

1.2 Related work

The inefficiency of Nash equilibria in auctions has been a well-known fact (see
e.g. [17]). Existence of efficient equilibria of simultaneous sealed bid auctions in
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full information settings was first studied by Bikhchandani [3]. Christodoulou,
Kovács and Schapira [7] initiated the study of the (Bayesian) price of anarchy
of simultaneous auctions with item-bidding. Several variants have been studied
since then [2, 12, 11], as well as multi-unit auctions [14, 18].

Syrgkanis and Tardos [22] proposed a general smoothness framework for sev-
eral types of mechanisms and applied it to settings with fractionally subadditive
bidders obtaining several upper bounds (e.g., first price auction, all-pay auc-
tion, and multi-unit auction). Christodoulou et al. [8] constructed tight lower
bounds for first-price auctions and showed a tight price of anarchy bound of 2
for all-pay auctions with subadditive valuations. Roughgarden [20] presented an
elegant methodology to provide price of anarchy lower bounds via a reduction
from the hardness of the underlying optimization problems.

All-pay auctions and contests have been studied extensively in economic the-
ory. Baye, Kovenock and de Vries [1], fully characterized the Nash equilibria in
single-item all-pay auction with complete information. The connection between
all-pay auctions and crowdsourcing contests was proposed in [9]. Chawla et al. [6]
studied the design of optimal crowdsourcing contest to optimize the maximum
bid in all-pay auctions when agents’ value are drawn from a specific distribution
independently.

2 Preliminaries

In a combinatorial auction, n players compete on m items with unit supply.
Every player (or bidder) i ∈ [n] has a valuation function vi : {0, 1}m → R+

which is monotone and normalized, that is, ∀S ⊆ T ⊆ [m], vi(S) ≤ vi(T ),
and vi(∅) = 0. The outcome of the auction is represented by a tuple of (X,p)
where X = (X1, . . . , Xn) specifies the allocation of items (Xi is the set of items
allocated to player i) and p = (p1, . . . , pn) specifies the buyers payments (pi is
the payment of player i for the allocation X). In the simultaneous item-bidding
auction, every player i ∈ [n] submits a non-negative bid bij for each item j ∈
[m]. The items are then allocated by independent auctions, i.e. the allocation
and payment rule for item j only depend on the players’ bids on item j. In
a simultaneous all-pay auction the allocation and payment for each player is
determined as follows: each item j ∈ [m] is allocated to the bidder i∗ with the
highest bid for that item, i.e. i∗ = arg maxi bij , and each bidder i is charged an
amount equal to pi =

∑
j∈[m] bij .

Definition 1 (Valuations). Let v : 2[m] → R be a valuation function. Then v is
called a) additive, if v(S) =

∑
j∈S v(j); b) submodular1, if v(S∪T )+v(S∩T ) ≤

v(S) + v(T ); c) fractionally subadditive or XOS, if v is determined by a finite
set of additive valuations ξk such that v(S) = maxk ξk(S).

The classes of the above valuations are in increasing order of inclusion.

1 Equivalently, submodular valuations are the valuations with decreasing marginal
values, i.e. v({j} ∪ T )− v(T ) ≤ v({j} ∪ S)− v(S) holds for any item j and S ⊆ T.
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Multi-unit Auction. In a multi-unit auction, m copies of an item are sold to n
bidders. Here, bidder i ’s valuation is a function that depends on the number
of copies he gets. That is vi : {0, 1, . . . ,m} → R+ and it is non-decreasing and
normalized, with vi(0) = 0. We say a valuation vi is submodular, if it has non-
increasing marginal values, i.e. vi(s+ 1)− vi(s) ≥ vi(t+ 1)− vi(t) for all s ≤ t.
Nash equilibrium and price of anarchy. We use bi to denote a pure strategy of
player i and it might be a single value or a vector, depending on the auction.
So, for the case of m simultaneous auctions, bi = (bi1, . . . , bim). We denote by
b−i = (b1, . . . , bi−1, bi+1, . . . , bn) the strategies of all players except for i. Any
mixed strategy Bi of player i is a probability distribution over bi.

For any profile of strategies, b = (b1, . . . , bn), X(b) denotes the allocation
under the strategy profile b. The valuation of player i for the allocation X(b) is
denoted by vi(X(b)) = vi(b). The utility ui of player i is defined as the difference
between her valuation and payment: ui(X(b)) = ui(b) = vi(b)− pi(b).

Definition 2 (Nash equilibria). A bidding profile b forms a pure Nash equi-
librium if for every player i and all bids b′i, ui(b) ≥ ui(b

′
i,b−i). Similarly, a

mixed bidding profile B = ×iBi is a mixed Nash equilibrium if for all bids b′i and
every player i, Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui(b

′
i,b−i)]. Clearly, any pure Nash

equilibrium is also a mixed Nash equilibrium.

Our global objective is to maximize the sum of the valuations of the players
for their received allocations, i.e., to maximize the social welfare SW (X) =∑
i∈[n] vi(Xi). So O(v) = O = (O1, . . . , On) is an optimal allocation if SW (O) =

maxX SW (X). In Sect. 5, we also study two other objectives: the revenue, which
equals the sum of the payments,

∑
i pi, and the maximum payment, maxi bi. We

also refer to the maximum payment as the maximum bid.

Definition 3 (Price of anarchy). Let I([n], [m],v) be the set of all instances,
i.e. I([n], [m],v) includes the instances for every set of bidders and items and any
possible valuation functions. The mixed price of anarchy, PoA, of a mechanism
is defined as

PoA = max
I∈I

max
B∈E(I)

SW (O)

Eb∼B[SW (X(b))]
,

where E(I) is the class of mixed Nash equilibria for the instance I ∈ I. The pure
PoA is defined as above but restricted in the class of pure Nash equilibria.

Let B = (B1, . . . , Bn) be a profile of mixed strategies. Given the profile B, we
fix the notation for the following cumulative distribution functions (CDF): Gij is
the CDF of the bid of player i for item j; Fj is the CDF of the highest bid for item
j and Fij is the CDF of the highest bid for item j if we exclude the bid of player i.
Observe that Fj = ΠkGkj and Fij = Πk 6=iGkj . We also use ϕij(x) to denote the
probability that player i gets item j by bidding x. Then, ϕij(x) ≤ Fij(x). When
we refer to a single item, we may drop the index j. Whenever it is clear from
the context, we will use shorter notation for expectations, e.g. we use E[ui(b)]
instead of Eb∼B[ui(b)], or even SW (B) to denote Eb∼B[SW (X(b))].

4



3 Combinatorial Auctions

In this section we prove an upper bound of 1.82 for the mixed price of anarchy
of simultaneous all-pay auctions when bidders’ valuations are fractionally sub-
additive (XOS). This result improves over the previously known bound of 2 due
to [22]. We first state our main theorem and present the key ingredients. Then
we prove these ingredients in the following subsections.

Theorem 4. The mixed price of anarchy for simultaneous all-pay auctions with
fractionally subadditive (XOS) bidders is at most 1.82.

Proof. Given a valuation profile v = (v1, . . . , vn), let O = (O1, . . . , On) be a
fixed optimal solution, that maximizes the social welfare. We can safely assume
that O is a partition of the items. Since vi is an XOS valuation, let ξOi

i be a
maximizing additive function with respect to Oi. For every item j we denote by
oj item j’s contribution to the optimal social welfare, that is, oj = ξOi

i (j), where
i is such that j ∈ Oi. The optimal social welfare is thus SW (O) =

∑
j oj . In

order to bound the price of anarchy, we consider only items with oj > 0, as it is
without loss of generality to omit items with oj = 0.

For a fixed mixed Nash equilibrium B, recall that by Fj and Fij we denote the
CDFs of the maximum bid on item j among all bidders, with and without the bid
of bidder i, respectively. For any item j ∈ Oi, let Aj = maxx≥0 {Fij(x)oj − x}.

As a key part of the proof we use the following two inequalities that bound
from below the social welfare in any mixed Nash equilibrium B.

SW (B) ≥
∑
j∈[m]

(
Aj +

∫ oj−Aj

0

(1− Fj(x))dx

)
, (1)

SW (B) ≥
∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx . (2)

Inequality (1) suffices to provide a weaker upper bound of 2 (see [8]). The proof of
(2) is much more involved, and requires a deeper understanding of the equilibria
properties of the induced game. We postpone their proofs in Sect. 3.1 (Lemma 5)
and Sect. 3.2 (Lemma 6), respectively. By combining (1) and (2),

SW (B) ≥ 1

1 + λ
·
∑
j

(
Aj +

∫ oj−Aj

0

(
1− Fj(x) + λ ·

√
Fj(x)

)
dx

)
, (3)

for some λ ≥ 0. It suffices to bound from below the right-hand side of (3) with
respect to the optimal social welfare. For any cumulative distribution function
F , and any positive real number v, let

R(F, v)
def
= A+

∫ v−A

0

(1− F (x))dx+ λ ·
∫ v−A

0

√
F (x)dx ,
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where A = maxx≥0{F (x) · v − x}. Inequality (3) can then be rewritten as
SW (B) ≥ 1

1+λ

∑
j R(Fj , oj). Finally, we show a lower bound of R(F, v) that

holds for any CDF F and any positive real v.

R(F, v) ≥ 3 + 4λ− λ4

6
· v . (4)

The proof of (4) is given in Sect. 3.3 (Lemma 9). Finally, we obtain that for any
λ > 0,

SW (B) ≥ 1

1 + λ

∑
j

R(Fj , oj) ≥
3 + 4λ− λ4

6λ+ 6
·
∑
j

oj =
3 + 4λ− λ4

6λ+ 6
· SW (O) .

By taking λ = 0.56, we conclude that the price of anarchy is at most 1.82. ut

3.1 Proof of Inequality (1)

This section is devoted to the proof of the following lower bound.

Lemma 5. SW (B) ≥
∑
j∈[m](Aj +

∫ oj−Aj

0
(1− Fj(x))dx).

Proof. Recall that Aj = maxxj≥0 {Fij(x)oj − xj}. We can bound bidder i’s
utility in the Nash equilibrium B by ui(B) ≥

∑
j∈Oi

Aj . To see this, consider
the deviation for bidder i, where he bids only for items in Oi, namely, for each
item j, he bids the value xj that maximizes the expression Fij(xj)oj −xj . Since
for any obtained subset T ⊆ Oi, he has value vi(T ) ≥

∑
j∈T oj , and the bids

xj must be paid in any case, the expected utility with these bids is at least∑
j∈Oi

maxxj≥0 (Fij(x)oj − xj) =
∑
j∈Oi

Aj . With B being an equilibrium, we
infer that ui(B) ≥

∑
j∈Oi

Aj . By summing up over all bidders,

SW (B) =
∑
i∈[n]

ui(B) +
∑
i∈[n]

∑
j∈[m]

E[bij ] ≥
∑
j∈[m]

Aj +
∑
j∈[m]

∑
i∈[n]

E[bij ]

≥
∑
j∈[m]

(Aj + E[max
i∈[n]
{bij}]) ≥

∑
j∈[m]

(
Aj +

∫ oj−Aj

0

(1− Fj(x))dx

)
.

The first equality holds because
∑
i Eb[vi(b)] =

∑
i Eb[ui(b) +

∑
j∈[m] bij ]. The

second inequality follows because
∑
i bij ≥ maxi bij and the last one is implied

by the definition of the expected value of any positive random variable. ut

3.2 Proof of Inequality (2)

Here, we prove the following lemma for any mixed Nash equilibrium B.

Lemma 6. SW (B) ≥
∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx.

First we show a useful lemma that holds for XOS valuations. We will further
use the technical Proposition 8, whose proof is deferred to Appendix B.
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Lemma 7. For any fractionally subadditive (XOS) valuation function v,

v(S) ≥
∑
j∈[m]

(v(S)− v(S \ {j})) .

Proof. Let ξ be a maximizing additive function of S for the XOS valuation v.
By definition, v(S) = ξ(S) and for every j, v(S \ {j}) ≥ ξ(S \ {j}). Then,∑
j∈[m] (v(S)− v(S \ {j})) ≤

∑
j∈S(ξ(S)− ξ(S \ {j})) =

∑
j∈S ξ(j) = v(S). ut

Proposition 8. For any integer n ≥ 2, any positive reals Gi ≤ 1 and positive
reals gi, for 1 ≤ i ≤ n,

n∑
i=1

gi∑
k 6=i

gk
Gk

≥

√√√√ n∏
i=1

Gi .

We are now ready to prove Lemma 6. We only state a proof sketch here to
illustrate the main ideas and defer the complete proof in Appendix A.

Proof (Sketch of Lemma 6). Recall that Gij is the CDF of the bid of player
i for item j. For simplicity, we assume Gij(x) is non-decreasing, continuous
and differentiable, with gij(x) being the PDF of player i’s bid for item j. The
general case is considered in the Appendix. First, we define the expected marginal
valuation of item j w.r.t player i,

vij(x)
def
= E

b∼B
[vi(Xi(b) ∪ {j})− vi(Xi(b) \ {j})|bij = x] .

Given the above definition and a careful characterization of mixed Nash equilib-
ria, we are able to show Fij(x) · vij(x) = E[vi(Xi(b))− vi(Xi(b) \ {j})|bij = x]

and 1
vij(x)

=
dFij(x)
dx for any x in the support of Gij . Let gij(x) be the derivative

of Gij(x). Using Lemma 7, we have

SW (B) =
∑
i

E[vi(Xi(b))] ≥
∑
i

∑
j

E[vi(Xi(b))− vi(Xi(b) \ {j})]

≥
∑
i

∑
j

∫ oj−Aj

0

E[vi(Xi(b))− vi(Xi(b) \ {j})|bij = x] · gij(x)dx

≥
∑
i

∑
j

∫ oj−Aj

0

Fij(x) · vij(x) · gij(x)dx ,

where the second inequality follows by the law of total probability. By using the

facts that Fij(x) =
∏
k 6=iGkj(x) and 1

vij(x)
=

dFij(x)
dx , for any x > 0 such that

gij(x) > 0 (x is in the support of player i) and Fj(x) > 0, we obtain

Fij(x)·vij(x)·gij(x)=
Fij(x)·gij(x)

dFij

dx (x)
=

∏
k 6=iGkj(x)·gij(x)∑

k 6=i

(
gkj ·

∏
s6=k∧s 6=iGsj

)=
gij(x)∑
k 6=i

gkj(x)
Gkj(x)

.
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For every x > 0, we use Proposition 8 only over the set S of players with
gij(x) > 0. After summing over all bidders we get,∑

i∈[n]

Fij(x) · vij(x) · gij(x) ≥
∑
i∈S

gij(x)∑
k 6=i,k∈S

gkj

Gkj

≥
√∏
i∈S

Gij(x) ≥
√
Fj(x) .

The above inequality also holds for Fj(x) = 0. Finally, by merging the above

inequalities, we conclude that SW (B) ≥
∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx. ut

3.3 Proof of Inequality (4)

In this section we prove the following technical lemma.

Lemma 9. For any CDF F and any real v > 0, R(F, v) ≥ 3+4λ−λ4

6 v.

In order to obtain a lower bound for R(F, v) as stated in the lemma, we
show first that we can restrict attention to cumulative distribution functions of
a simple special form, since these constitute worst cases for R(F, v). In the next
lemma, for an arbitrary CDF F we will define a simple piecewise linear function
F̂ that satisfies the following two properties:∫ v−A

0

(1−F̂ (x))dx =

∫ v−A

0

(1−F (x))dx ;

∫ v−A

0

√
F̂ (x)dx ≤

∫ v−A

0

√
F (x)dx .

Once we establish this, it is convenient to lower bound R(F̂ , v) for the given
type of piecewise linear functions F̂ .

Lemma 10. For any CDF F and real v > 0, there always exists another CDF
F̂ such that R(F, v) ≥ R(F̂ , v) that, for A = maxx≥0{F (x) · v−x}, is defined by

F̂ (x) =

{
0 , if x ∈ [0, x0]

x+A
v , if x ∈ (x0, v −A] .

We give the proof of Lemma 10 in Appendix C. Now we are ready to proceed
with the proof of Lemma 9.

Proof (of Lemma 9). By Lemma 10, for any fixed v > 0, we only need to consider
the CDF’s in the following form: for any positive A and x0 such that x0 +A ≤ v,

F (x) =

{
0 , if x ∈ [0, x0]

x+A
v , if x ∈ (x0, v −A] .

Clearly, maxx≥0{F (x) · v − x} = A. Let t = A+x0

v . Then

R(F, v) = A+

∫ v−A

0

(1− F (x))dx+ λ ·
∫ v−A

0

√
F (x)dx

= v − v

2
·
(
x+A

v

)2 ∣∣∣∣v−A
x0

+ λ · 2v

3
·
(
x+A

v

) 3
2
∣∣∣∣v−A
x0

= v − v

2
· (1− t2) + λ · 2v

3
· (1− t 3

2 ) = v ·
(

1

2
(1 + t2) +

2λ

3
(1− t 3

2 )

)
.
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By optimizing over t, the above formula is minimized when t = λ2 ≤ 1. That is,

R(F, v) ≥ v·
(

1

2
(1 + λ4) +

2λ

3
(1− λ3)

)
=

3 + 4λ− λ4

6
·v . ut

4 Multi-unit Auctions

In this section, we propose a randomized all-pay mechanism for the multi-unit
setting, where m identical items are to be allocated to n bidders. Markakis and
Telelis [18] and de Keijzer et al. [14] have studied the price of anarchy for several
multi-unit auction formats. The current best upper bound obtained was 1.58 for
both pure and mixed Nash equilibria.

We propose a randomized all-pay mechanism that induces a unique pure
Nash equilibrium, with an improved price of pnarchy bound of 4/3. We call the
mechanism Random proportional-share allocation mechanism (PSAM), as it is
a randomized version of Kelly’s celebrated proportional-share allocation mecha-
nism for divisible resources [15]. The mechanism works as follows (illustrated as
Mechanism 1).

Each bidder submits a non-negative real bi to the auctioneer. After soliciting
all the bids from the bidders, the auctioneer associates a real number xi with
bidder i that is equal to xi = m·bi∑

i∈[n] bi
. Each player pays their bid, pi = bi. In

the degenerate case, where
∑
i bi = 0, then xi = 0 and pi = 0 for all i.

We turn the xi’s to a random allocation as follows. Each bidder i secures
bxic items and gets one more item with probability xi − bxic. An application
of the Birkhoff-von Neumann decomposition theorem guarantees that given an
allocation vector (x1, x2, . . . , xn) with

∑
i xi = m, one can always find a ran-

domized allocation2 with random variables X1, X2, . . . , Xn such that E[Xi] = xi
and Pr[bxic ≤ Xi ≤ dxie] = 1 (see for example [10, 4]).

We next show that the game induced by the Random PSAM when the bid-
ders have submodular valuations is isomorphic to the game induced by Kelly’s
mechanism for a single divisible resource when bidders have piece-wise linear
concave valuations. For convenience, we review in Appendix D the definition of
isomorphism between games as appears in Monderer and Shapley [19].

Theorem 11. Any game induced by the Random PSAM applied to the multi-
unit setting with submodular bidders is isomorphic to a game induced from
Kelly’s mechanism applied to a single divisible resource with piece-wise linear
concave functions.

Proof. For each bidder i’s submodular valuation function fi : {0, 1, . . . ,m} →
R+, we associate a concave function gi : [0, 1]→ R+ such that,

∀x ∈ [0,m], gi(x/m) = fi(bxc) + (x− bxc) · (fi(bxc+ 1)− fi(bxc)) . (5)

2 As an example, assume x1 = 2.5, x2 = 1.6, x3 = 1.9. One can define a random allo-
cation such that assignments (3, 2, 1), (3, 1, 2) and (2, 2, 2) occur with probabilities
0.1, 0.4, and 0.5 respectively.
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Mechanism 1: Random PSAM
Input: Total number of items m and all bidders’ bid b1, b2, . . . , bn
Output: Ex-post allocations X1, X2, . . . , Xn and payments p1, p2, . . . , pn
if

∑
i∈[n] bi > 0 then

foreach bidder i = 1, 2, . . . , n do

xi ← m·bi∑
i∈[n] bi

;

pi ← bi;

Sample {Xi}i∈[n] from {xi}i∈[n] by using Birkhoff-von Neumann decomposition
theorem such that bxic ≤ X ≤ dxie and the expectation of sampling Xi is xi;

else Set X = 0 and p = 0;
Return Xi and pi for all i ∈ [n];

Essentially, gi is the piecewise linear function that comprises the line segments
that connect fi(k) with fi(k + 1), for all nonnegative integers k. It is easy to
see that gi is concave if fi is submodular (see also Fig. D in Appendix D for
an illustration). We use identity functions as the bijections φi of Definition 36.
Therefore, it suffices to show that, for any pure strategy profile b, ui(b) = u′i(b),
where ui and u′i are the bidder i’s utility functions in the first and second game,
respectively. Let xi = m·bi∑

i bi
, then

ui(b) = (xi − bxic)fi(bxic+ 1) + (1− xi + bxic)fi(bxic)− bi
= fi(bxic) + (xi − bxic)(fi(bxic+ 1)− fi(bxic))− bi

= gi

(xi
m

)
− bi = gi

(
bi∑
i bi

)
− bi = u′i(b) .

Note that gi

(
bi∑
i bi

)
− bi is player i’s utility, under b, in Kelly’s mechanism. ut

We next show an equivalence between the optimal welfares. We give the proof
of Lemma 12 in Appendix D.

Lemma 12. The optimum social welfare in the multi-unit setting, with sub-
modular valuations f = (f1, . . . , fn), is equal to the optimal social welfare in the
divisible resource allocation with concave valuations g = (g1, . . . gn), where g is
derived from f as described in (5).

Theorem 11 and Lemma 12, allow us to obtain the existence and uniqueness
of the pure Nash equilibrium, as well as the price of anarchy bounds of Random
PSAM by the corresponing results on Kelly’s mechanism for a single divisible
resource [13]. Moreover, it can be shown that there are no other mixed equilibria
by adopting the arguments of [5] for Kelly’s mechanism. The main conclusion of
this section is summarized in the following Corollary.

Corollary 13. Random PSAM induces a unique pure Nash equilibrium when
applied to the multi-unit setting with submodular bidders. Moreover, the price of
anarchy of the mechanism is exactly 4/3.
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5 Single item auctions

In this section, we study mixed Nash equilibria in the single item all-pay auction.
First, we measure the inefficiency of mixed Nash equilibria, showing tight results
for the price of anarchy. En route (in the Appendix), we also show that the price
of anarchy is 8/7 for two players. Then we analyze the quality of two other
important criteria, the expected revenue (the sum of bids) and the quality of the
expected highest submission (the maximum bid), which is a standard objective
in crowdsourcing contests [6]. For these objectives, we show a tight lower bound
of v2/2, where v2 is the second highest value among all bidders’ valuations. In
the following, we drop the word expected while referring to the revenue or to
the maximum bid.

We quantify the loss of revenue and the highest submission in the worst-
case equilibria. We show that the all-pay auction achieves a 2-approximation
comparing to the conventional procurement (modeled as the first price auction),
when considering worst-case mixed Nash equilibria; we show in Appendix F that
the revenue and the maximum bid of the conventional procurement equals v2
in the worst case. We also consider other structures of rewards allocation and
conclude that allocating the entire reward to the highest bidder is the only way
to guarantee the approximation factor of 2. Roughly speaking, allocating all the
reward to the top prize is the optimal way to maximize the maximum bid and
revenue among all the prior-free all-pay mechanisms where the designer has no
prior information about the participants’ skills.

Due to the lack of space we give the proofs of theorems and lemmas of this
section in Appendix E.

Theorem 14. The mixed price of anarchy of the single item all-pay auction is
1.185.

Theorem 15. In any mixed Nash equilibrium of the single-item all-pay auction,
the revenue and the maximum bid are at least half of the second highest valuation.

Lemma 16. There exists a mixed Nash equilibrium of the single-item all-pay
auction, where the revenue and the maximum bid converges to v2/2 when the
number of players goes to infinity and v2/v1 approaches 0.

Finally, the next theorem indicates that allocating the entire reward to the
highest bidder is the best choice. In particular a prior-free all-pay mechanism is
presented by a probability vector q = (qi)i∈[n], with

∑
i∈[n] qi = 1, where qi is

the probability that the ith highest bidder is allocated the item, for every i ≤ n.

Theorem 17. For any prior-free all-pay mechanism that assigns the item to
the highest bidder with probability strictly less than 1, i.e. q1 < 1, there exists
a valuation profile and mixed Nash equilibrium such that the revenue and the
maximum bid are strictly less than v2/2.

11
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A Proof of Lemma 6

Lemma 6 (restated). SW (B) ≥
∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx.

Recall that oj is the contribution of item j to the optimum social wel-
fare. If player i is the one receiving item j in the optimum allocation, then
Aj = maxx≥0{Fij(x) · oj − x}. The proof of Lemma 6 needs a careful technical
preparation that we divided into a couple of lemmas.

First of all, we define the expected marginal valuation of item j for player
i. For given mixed strategy Bi, the distribution of bids on items in [m] \ {j}
depends on the bid bij , so one can consider the given conditional expectation:

Definition 18. Given a mixed bidding profile B = (B1, B2, . . . , Bn), the ex-
pected marginal valuation vij(x) of item j for player i when bij = x is defined
as

vij(x)
def
= E

b∼B
[vi(Xi(b) ∪ {j})− vi(Xi(b) \ {j})|bij = x] .

For a given B, let ϕij(x) denote the probability that bidder i gets item j when
she bids x on item j. It is clear that ϕij is non-decreasing and ϕij(x) ≤ Fij(x)
(they are equal when no ties occur).

Lemma 19. For a given B, for any bidder i, item j and bids x ≥ 0 and y ≥ 0,

ϕij(y) · vij(x) = E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x] ,

where b′ is the modified bid of b such that b′ = b except that b′ij = y.

Proof.

E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x]

= E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x, j ∈ Xi(b
′)]Pr(j ∈ Xi(b

′)|bij = x)

+ E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x, j /∈ Xi(b
′)]Pr(j /∈ Xi(b

′)|bij = x)

= E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x, j ∈ Xi(b
′)]Pr(j ∈ Xi(b

′)|bij = x)

= E
b∼B

[vi(Xi(b
′))− vi(Xi(b

′) \ {j})|bij = x, j ∈ Xi(b
′)] · ϕij(y)

= E
b∼B

[vi(Xi(b
′) ∪ {j})− vi(Xi(b

′) \ {j})|bij = x, j ∈ Xi(b
′)] · ϕij(y)

= E
b∼B

[vi(Xi(b
′) ∪ {j})− vi(Xi(b

′) \ {j})|bij = x] · ϕij(y)

= ϕij(y) · vij(x) .

The second equality is due to Eb∼B[vi(Xi(b
′))) − vi(Xi(b

′) \ {j})|bij = x, j /∈
Xi(b

′)] = 0; the third one holds because b′ij = y, and that other players’ bids
have distribution ×k 6=iBk. The fourth one is obvious, since Xi(b

′) = Xi(b
′) ∪

{j} given that j ∈ Xi(b
′). The last two equalities follow from the fact that

vi(Xi(b
′) ∪ {j}) − vi(Xi(b

′) \ {j}) is independent of the condition j ∈ Xi(b
′)

and of the player i’s bid on item j. ut
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Definition 20. Given a Nash equilibrium B, we say a bid x is good for bidder
i and item j (or bij = x is good) if E[ui(b)] = E[ui(b)|bij = x], otherwise we
say bij = x is bad.

Lemma 21. Given a Nash equilibrium B, for any bidder i and any item j,
Pr[bij is bad ] = 0.

Proof. The lemma follows from the definition of Nash equilibrium; otherwise we
can replace the bad bids with good bids and improve the bidder’s utility. ut

Lemma 22. Given a Nash equilibrium B, for any bidder i, item j, good bid x
and any bid y ≥ 0,

ϕij(x) · vij(x)− x ≥ ϕij(y) · vij(x)− y .

Moreover, for a good bid x > 0, ϕij(x) > 0 holds.

Proof. Let b′ be the modified bid of b such that b′ = b except that b′ij = y.

E[ui(b)] = E[ui(b)|bij = x] ≥ E[ui(b
′)|bij = x] .

Now we consider the difference between the above two terms:

0 ≤ E[ui(b)|bij = x]− E[ui(b
′)|bij = x]

= E[vi(Xi(b))− bij |bij = x]− E[vi(Xi(b
′))− b′ij |bij = x]

= E[vi(Xi(b))− vi(Xi(b) \ {j})|bij = x]

−E[vi(Xi(b
′))− vi(Xi(b

′) \ {j}|bij = x] + y − x
= (ϕij(x) · vij(x)− x)− (ϕij(y) · vij(x)− y) .

The second equality holds since Xi(b) \ {j} = Xi(b
′) \ {j}; the third equality

holds by Lemma 19.
Finally, ϕij(x) > 0 for positive good bids follows by taking y = 0, since with

ϕij(x) = 0 the left hand side of the inequality would be negative. ut

Next, by using the above lemma, we are able to show several structural results
for Nash equilibria.

Definition 23. Given a mixed strategy profile B, we say that a positive bid
x > 0 is in bidder i’s support on item j, if for all ε > 0, Gij(x)−Gij(x−ε) > 0.

Lemma 24. Given a mixed strategy profile B, if a positive bid x is in bidder i’s
support on item j, then for every ε > 0, there exists x− ε < x′ ≤ x such that x′

is good.

Proof. Suppose on the contrary that there is an ε > 0 such that for all x′, such
that x − ε < x′ ≤ x, x′ is bad. Then Pr[bij is bad] ≥ Gij(x) − Gij(x − ε) > 0
(given that x is in the support), which contradicts Lemma 21. ut
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Lemma 25. Given a Nash equilibrium B, if x > 0 is in bidder i’s support on
item j, then there must exist another bidder k 6= i such that x is also in the
bidder k’s support on item j, i.e. for all ε > 0, Gkj(x)−Gkj(x− ε) > 0.

Proof. Assume on the contrary that for each player k 6= i, there exists εk > 0
such that Gkj(x)−Gkj(x− εk) = 0. Clearly, for ε = min{εk|k 6= i} it holds that
Gkj(x) − Gkj(x − ε) = 0 for all bidders k 6= i. That is ϕij(x) = ϕij(x − ε). By
Lemma 24, there exists x−ε < x′ ≤ x such that x′ is good for player i. Since ϕij
is a non-decreasing function and ϕij(x) = ϕij(x−ε), we have ϕij(x

′) = ϕij(x−ε).
By Lemma 22, ϕij(x

′) ·vij(x′)−x′ ≥ ϕij(x−ε) ·vij(x′)−x+ε which contradicts
the fact that ϕij(x

′) = ϕij(x− ε) and x′ > x− ε. ut

Lemma 26. Given a Nash equilibrium B, for bidder i and item j, there are no
x > 0 such that Pr[bij = x] > 0, i.e. there are no mass points in the bidding
strategy, except for possibly 0.

Proof. Assume on the contrary that there exists a bid x > 0 such that Pr[bij =
x] > 0 for some bidder i and item j. By Lemma 21, x is good for bidder i and
item j, and ϕij(x) > 0 by Lemma 22.

According to Lemma 25, there must exist a bidder k such that x is in her
support on item j. We can pick a sufficiently small ε such that ε < (x − ε) ·
ϕij(x) · Pr[bij = x]. This can be done since (x − ε) increases when ε decreases.
Due to Lemma 24 there exists x− ε < x′ ≤ x such that x′ is good for bidder k
and item j. Now we consider the following two cases for x′.

Case 1: vkj(x
′) ≤ x′. Then ϕkj(x

′) · vkj(x′) − x′ ≤ ϕkj(x
′) · x′ − x′ ≤ (1 −

ϕij(x) · Pr[bij = x]) · x′ − x′ < 0, contradicting Lemma 22. The first inequality
holds by the case assumption. The second holds because player k cannot get
item j with bid x′ whenever player i gets it by bidding x. The last inequality
holds because both ϕij(x) > 0 and Pr[bij = x] > 0.

Case 2: vkj(x
′) > x′. Then there exists a sufficiently small ε′ such that

ε′ ≤ (x− ε) · ϕij(x) · Pr[bij = x]− ε. So ε+ ε′ ≤ x′ · ϕij(x) · Pr[bij = x]. Then,

ϕkj(x+ ε′) · vkj(x′)− x− ε′

≥(ϕkj(x
′) + ϕij(x) · Pr[bij = x]) · vkj(x′)− x− ε′

>ϕkj(x
′) · vkj(x′) + ϕij(x) · Pr[bij = x] · x′ − x′ − (x− x′)− ε′

>ϕkj(x
′) · vkj(x′) + ϕij(x) · Pr[bij = x] · x′ − x′ − ε− ε′

≥ϕkj(x′) · vkj(x′)− x′ ,

which contradicts Lemma 22. Here the first inequality holds because the proba-
bility that player k gets the item with bid x+ε′ is at least the probablity that he
gets it by bidding x′ plus the probability that i bids x and gets the item (these
two events for b−k are disjoint). The second inequality holds by case assump-
tion, and the rest hold by our assumptions on ε and ε′. ut

Lemma 27. Given a Nash equilibrium B, for any bidder i and item j, ϕij(x) =
Fij(x) for all x > 0.
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Proof. The lemma follows immediately from Lemma 26. The probablity that
some player k 6= i bids exactly x is zero. Thus Fij(x) equals the probability that
the highest bid of players other than i is strictly smaller than x, and 1− Fij(x)
is the probability that it is strictly higher. Therefore ϕij(x) = Fij(x). ut

Lemma 28. Given a Nash equilibrium B, for any bidder i, item j and good bids
x1 > x2 > 0, vij(x1) ≥ vij(x2).

Proof. By Lemma 22, we have (ϕij(x1) − ϕij(x2)) · vij(x1) ≥ x1 − x2 and
(ϕij(x2) − ϕij(x1)) · vij(x2) ≥ x2 − x1. Combining these two inequalities, we
have

1

vij(x1)
≤ ϕij(x1)− ϕij(x2)

x1 − x2
≤ 1

vij(x2)
.

ut

Lemma 29. Given a Nash equilibrium B and item j, let T = sup{x|x is in
some bidder’s support on item j}. For any bid x < T , x is in some bidder’s
support on item j.

Proof. Assume on the contrary that there exist a bid x < T such that x is not
in any bidder’s support. Then there exists δ > 0 such that Gij(x) = Gij(x− δ)
for all bidder i. Let y = sup{z|∀i, Gij(x) = Gij(z)}. By Lemma 26, Gij is
continuous. So we have Gij(y) = Gij(x) = Gij(x − δ) for any bidder i. That is
Fij(y) = Fij(x− δ) for any bidder i.

By the definition of supremum, there exits a bidder k such that for any
ε > 0, Gkj(y + ε) > Gkj(x) = Gkj(y). By Lemma 21, there exists a good bid
y+ ∈ (y, y + ε] for bidder k and item j. We pick a sufficient small ε such that
(Fkj(y

+) − Fkj(y)) · vkj(y+) < δ. This can be done since Fkj is continuous by
Lemma 26 and vkj is non-decreasing by Lemma 28.

Fkj(x− δ) · vij(y+)− x+ δ

=Fij(y) · vij(y+)− x+ δ

>Fij(y) · vij(y+)− y+ + δ

>Fij(y
+) · vij(y+)− y+ ,

which contradicts Lemma 22 and Lemma 27. ut

Lemma 30. Given a Nash equilibrium B, if x > 0 is a good bid for bidder i
and item j, and Fij is differentiable in x, then

1

vij(x)
=
dFij(x)

dx
.

Proof. Notice that vij(x) 6= 0 by Lemma 22. By Lemma 22 and 27, we have
Fij(x) · vij(x)− x ≥ Fij(y) · vij(x)− y for all y ≥ 0. So for any ε > 0,

Fij(x) · vij(x)− x ≥ Fij(x+ ε) · vij(x)− x− ε ,
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Fij(x) · vij(x)− x ≥ Fij(x− ε) · vij(x)− x+ ε .

That is,
Fij(x+ ε)− Fij(x)

ε
≤ 1

vij(x)
,

Fij(x)− Fij(x− ε)
ε

≥ 1

vij(x)
.

The lemma follows by taking the limit when ε goes to 0. ut

Proof (of Lemma 6). Since Gij(x) is non-decreasing, continuous (Lemma 26)
and bounded by 1, Gij(x) is differentiable on almost all points. That is, the set
of all non-differentiable points has Lebesgue measure 0. So it will not change
the value of integration if we remove these points. Therefore it is without loss of
generality to assume Gij(x) is differentiable for all x. Let gij(x) be the derivative
of Gij(x), i.e. probability density function for bidder i’s bidding on item j. Using
Lemma 7, we have

SW (B) =
∑
i

E[vi(Xi(b))]

≥
∑
i

∑
j

E[vi(Xi(b))− vi(Xi(b) \ {j})]

≥
∑
i

∑
j

∫ oj−Aj

0

E[vi(Xi(b))− vi(Xi(b) \ {j})|bij = x] · gij(x)dx

≥
∑
i

∑
j

∫ oj−Aj

0

Fij(x) · vij(x) · gij(x)dx .

The second inequality follows by the law of total probability, and the third is
due to Lemmas 19 and 27. By Lemma 30 and the fact that Fij(x) =

∏
k 6=iGkj(x),

if x is good, gij(x) > 0 and Gij(x) > 0 we have for all j

Fij(x) · vij(x) · gij(x) =
Fij(x) · gij(x)

dFij

dx (x)

=

∏
k 6=iGkj(x) · gij(x)∑

k 6=i

(
gkj ·

∏
s6=k∧s 6=iGsj

) =
gij(x)∑
k 6=i

gkj(x)
Gkj(x)

.

By concentrating on a specific item j, let Sx be the set of bidders so that x
is in their support. We next show that |Sx| ≥ 2 for all x ∈ (0, oj − Aj ]. Recall
that Aj = maxx {Fij(x) · oj − x} for the bidder i who receives j in O. Let
hij = min{x|Fij = 1} (we use minimum instead of infimum, since, by Lemma
26, Fij is continuous). By definition hij should be in some bidder’s support.
Moreover, Aj ≥ Fij(hij) · oj − hij = oj − hij , resulting in oj − Aj ≤ hij .
Therefore, by Lemma 29, for all x ∈ (0, oj − Aj ], x is in some bidder’s support
and by Lemma 25, there are at least 2 bidders such that x is in their supports.
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By the definition of derivative, for all i 6∈ Sx, gij(x) = 0. Similarly, we have
gij(x) > 0 and Gij(x) > 0 for all i ∈ Sx by definition 23. Moreover, for every
i ∈ Sx, x is good for bidder i and item j, since x is in their support. So, for any
fixed x ∈ (0, oj−Aj ],

∑
i∈[n] Fij(x) ·vij(x) ·gij(x) =

∑
i∈Sx

Fij(x) ·vij(x) ·gij(x),
and according to Proposition 8,∑
i∈[n]

Fij(x)·vij(x)·gij(x) ≥
∑
i∈Sx

gij(x)∑
k 6=i,k∈Sx

gkj

Gkj

≥
√∏
i∈Sx

Gij(x) ≥
√∏
i∈[n]

Gij(x) .

Merging all these inequalities,

SW (B) ≥
∑
j∈[m]

∫ oj−Aj

0

√∏
i∈[n]

Gij(x)dx =
∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx .

ut

B Proof of Proposition 8

Proposition 8 (restated). For any integer n ≥ 2, any positive real Gi ≤ 1
and positive real gi for 1 ≤ i ≤ n,

n∑
i=1

gi∑
k 6=i

gk
Gk

≥

√√√√ n∏
i=1

Gi .

In order to prove the proposition, we will minimize the left hand side of the
inequality over all Gi and gi, such that

0 < Gi ≤ 1 gi > 0 (i ∈ [n]) where

n∏
t=1

Gt is a constant . (6)

We introduce the following notation:

H =

n∑
i=1

gi∑n
t=1,t6=i

gt
Gt

and ∀i, Hi =
gi∑n

t=1,t6=i
gt
Gt

.

Note that H =
∑n
i=1Hi. Our goal is to minimize H over all possible variables

Gi and gi under the constraints (6), and eventually show H ≥
√∏n

i=1Gi. We
also use the notation G = (Gi)i, g = (gi)i, H = H(G,g) and Hi = Hi(G,g),
∀i.

Lemma 31. For every G and g that minimize H(·, ·) under constraints (6):

1. If Gi < 1 and Gj < 1, then Hi = Hj ,
2. If Gi = Gj = 1 then gi = gj.
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We prove Lemma 31, by proving Lemmas 32 and 33.

Lemma 32. Under constraints (6), if G and g minimize H(·, ·), then for every
Gi < 1 and Gj < 1, Hi(G,g) = Hj(G,g).

Proof. For the sake of contradiction, suppose that there exist Gi < 1 and Gj < 1
such that (w.l.o.g.) Hi(G,g) > Hj(G,g). Let

r = min

{(
Hi(G,g)

Hj(G,g)

) 1
2

,
1

Gj

}
.

Notice that r > 1.
Claim: We claim that H(G,g) > H(G′,g′), where G′ = (Gi

r , rGj ,G−ij) and
g′ = ( gir , rgj ,g−ij).
As usual G−ij stands for G vector after eliminating Gi and Gj (accordingly for
g−ij). Therefore G′ and g′ are the same as G and g by replacing Gi, Gj , gi, gj
by Gi

r , rGj ,
gi
r , rgj , respectively.

Proof of the claim: Notice that

g′i
G′i

=
gi/r

Gi/r
=

gi
Gi

,
g′j
G′j

=
rgj
rGj

=
gj
Gj

and ∀s 6= i, j, G′s = Gs and g′s = gs .

Therefore, ∀s 6= i, j, Hs(G,g) = Hs(G
′,g′). So, we only need to show that

Hi(G,g) +Hj(G,g) > Hi(G
′,g′) +Hj(G

′,g′).

Hi(G
′,g′) +Hj(G

′,g′)

=
g′i(x)∑n

t=1,t6=i
g′t(x)
G′t(x)

+
g′j(x)∑n

t=1,t6=j
g′t(x)
G′t(x)

=
gi(x)/r∑n
t=1,t6=i

gt(x)
Gt(x)

+
rgj(x)∑n

t=1,t6=j
gt(x)
Gt(x)

=
Hi(G,g)

r
+ rHj(G,g)

=

(
1

r
− 1

)
Hi(G,g) + (r − 1)Hj(G,g) +Hi(G,g) +Hj(G,g)

≤
(

1

r
− 1

)
r2Hj(G,g) + (r − 1)Hj(G,g) +Hi(G,g) +Hj(G,g)

= − (r − 1)
2
Hj(G,g) +Hi(G,g) +Hj(G,g)

< Hi(G,g) +Hj(G,g) .

In the above inequalities we used that r > 1 and r2 ≤ Hi(G,g)
Hj(G,g)

. The claim

contradicts the assumption that H(G,g) is the minimum, so the lemma holds.
ut
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Lemma 33. Under constraints (6), if G and g minimize H(·, ·), then for every
Gi = Gj = 1, gi = gj .

Proof. For the sake of contradiction, suppose that there exist Gi = Gj = 1

such that gi 6= gj . We will prove that for g′ = (
gi+gj

2 ,
gi+gj

2 , g−ij) (i.e. for every

k 6= i, j, g′k = gk, and g′i = g′j =
gi+gj

2 ), H(G,g) > H(G,g′).
Notice that for every k 6= i, j, Hk(G,g′) = Hk(G,g), since gi + gj = g′i + g′j

and Gi = Gj = 1. Hence it is sufficient to show that Hi(G,g) + Hj(G,g) ≥
Hi(G,g′) +Hj(G,g′). Let Aij =

∑
t6=j,t 6=i

gt
Gt

.

Hi(G,g) +Hj(G,g)−Hi(G,g′)−Hj(G,g′)

=
gi

gj +Aij
+

gj
gi +Aij

− gi
gi+gj

2 +Aij
− gj

gi+gj
2 +Aij

=
gi

gj +Aij
+

gj
gi +Aij

− 2gi + 2gj
gi + gj + 2Aij

= gi
(gi +Aij)((gi + gj + 2Aij)− 2(gj +Aij))

(gj +Aij)(gi +Aij)(gi + gj + 2Aij)

+ gj
(gj +Aij)((gi + gj + 2Aij)− 2(gi +Aij))

(gj +Aij)(gi +Aij)(gi + gj + 2Aij)

=
gi(gi +Aij)(gi − gj) + gj(gj +Aij)(gj − gi)

(gj +Aij)(gi +Aij)(gi + gj + 2Aij)

=
(gi − gj)(g2i − g2j +Aij(gi − gj))

(gj +Aij)(gi +Aij)(gi + gj + 2Aij)

=
(gi − gj)2(gi + gj +Aij)

(gj +Aij)(gi +Aij)(gi + gj + 2Aij)
> 0 ,

which contradicts the assumption that G and g minimize H(·, ·). ut

Lemma 34. If Hi = Hj, then:

1. gi = gj ⇔ Gi = Gj,
2. (gi = rgj > 0 and r ≥ 1)⇒ Gi ≥ r2Gj.

Proof. Let Aij =
∑
t6=j,t 6=i

gt
Gt

; then Hi = gi
gj
Gj

+Aij
. By assumption:

gi
gj
Gj

+Aij
=

gj
gi
Gi

+Aij

g2i
Gi

+ giAij =
g2j
Gj

+ gjAij

(gi − gj)Aij =
g2j
Gj
− g2i
Gi

.

If gi = gj then 1
Gj
− 1

Gi
= 0, so Gi = Gj .

If Gi = Gj then (gi−gj)(gi+gj +AijGi) = 0 . Under constraints (6), AijGi > 0
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and gi, gj > 0, so gi − gj = 0 which results in gi = gj .

If gi = rgj , with r ≥ 1 then (gi − gj)Aij ≥ 0 and so 1
Gj
− r2

Gi
≥ 0, which implies

Gi ≥ r2Gj . ut

Lemma 35. For n, k integers, n ≥ 2, 1 ≤ k ≤ n, 0 < a ≤ 1 and g > 0:

L =
kg

(k − 1) ga + n− k
+

n− k
k ga + n− k − 1

≥ a .

Proof. We distinguish between two cases, 1) k > 1
1−
√
a

and 2) k ≤ 1
1−
√
a
.

Case 1 (k > 1
1−
√
a
): For k = n, L = k

k−1a ≥ a. We next show that dL
dg ≤ 0, for

n ≥ 2, 1 ≤ k < n, 0 < a ≤ 1 and g > 0.

dL

dg
=

(n− k)k(
(k−1)g
a + n− k

)2 − (n− k)k(
kg
a + n− k − 1

)2
a
≤ 0

(
(k − 1)g

a
+ n− k

)2

−
(
kg

a
+ n− k − 1

)2

a ≥ 0(
(k − 1)g

a
+ n− k +

(
kg

a
+ n− k − 1

)
a

1
2

)
·
(

(k − 1)g

a
+ n− k −

(
kg

a
+ n− k − 1

)
a

1
2

)
≥ 0(

(k − 1)g

a
+ n− k −

(
kg

a
+ n− k − 1

)
a

1
2

)
≥ 0(g

a

(
k − 1− ka 1

2

)
+ (n− k)

(
1− a 1

2

)
+ a

1
2

)
≥ 0

k − 1− ka 1
2 ≥ 0 ,

which is true by the case assumption. Therefore, L is non-increasing and so it is
minimized for g =∞. Hence, L ≥ k

k−1a ≥ a.

Case 2 (k ≤ 1
1−
√
a
): L is minimized (dL/dg(g∗) = 0) for g∗ =

a(
√
a+(n−k)(1−

√
a))

k
√
a−k+1

,

therefore:

L ≥
k2 (1−

√
a)

2
+ k

(
a− n (1−

√
a)

2 − 1
)

+ n)

(n− 1)
,

which is minimizes for k = n
2 +

(1+
√
a)

2(1−
√
a)

. However, for n ≥ 2, n
2 +

(1+
√
a)

2(1−
√
a)
≥

1
1−
√
a
. Notice, though, that for k ≤ 1

1−
√
a
, L is decreasing, so it is minimized for

k = 1
1−
√
a
. Therefore, L ≥

√
a ≥ a. ut

Proof. (Proposition 8)
Let G and g minimize H(·, ·) and also let S = {i|Gi < 1} and F =

∏n
t=1Gt.
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Moreover, given Lemma 31, for gi = ĝ for every i /∈ S and j = arg mini∈S gi,
H(G,g) can be written as:

H(G,g) = |S| gj∑
t∈S,t 6=j

gt
Gt

+ (n− |S|)ĝ
+ (n− |S|) ĝ∑

t∈S
gt
Gt

+ (n− |S| − 1)ĝ
.

Let gi = rigj , for every i ∈ S. Since j = arg mini∈S gi, then for every i ∈ S,
ri ≥ 1. By using Lemma 34:

H(G,g) =
|S| · gj∑

t∈S,t 6=j
rtgj

G
1
2
t G

1
2
t

+ (n− |S|)ĝ
+

(n− |S|) · ĝ∑
t∈S

rtgj

G
1
2
t G

1
2
t

+ (n− |S| − 1)ĝ

≥ |S| · gj∑
t∈S,t 6=j

rtgj

(r2tGj)
1
2G

1
2
t

+ (n− |S|)ĝ
+

(n− |S|) · ĝ∑
t∈S

rtgj

(r2tGj)
1
2G

1
2
t

+ (n− |S| − 1)ĝ

≥ |S| · gj∑
t∈S,t 6=j

gj

F
1
2

+ (n− |S|)ĝ
+

(n− |S|) · ĝ∑
t∈S

gj

F
1
2

+ (n− |S| − 1)ĝ

=
|S| · gj

(|S| − 1)
gj

F
1
2

+ (n− |S|)ĝ
+

(n− |S|) · ĝ
|S| gj

F
1
2

+ (n− |S| − 1)ĝ
.

Let g =
gj
ĝ , then:

H(G,g) ≥ |S| · g
(|S| − 1) g

F
1
2

+ n− |S|
+

n− |S|
|S| g

F
1
2

+ n− |S| − 1
.

If |S| = 0, H(G,g) ≥ n
n−1 ≥ 1 ≥

√
F . Else, due to Lemma 35, H(G,g) ≥

√
F .
ut

C Proof of Lemma 10

Lemma 10 (restated). For any CDF F and real v > 0, there always exists
another CDF F̂ such that R(F, v) ≥ R(F̂ , v) that, for A = maxx≥0{F (x) ·v−x},
is defined by

F̂ (x) =

{
0 , if x ∈ [0, x0]

x+A
v ,if x ∈ (x0, v −A] .

First notice that maxx≥0{F̂ (x) · v − x} = A. By the definition of Riemann
integration, we can represent the integration as the limit of Riemann sums. For
any positive integer l, let Rl be the Riemann sum if we partition the interval
[0, v −A] into small intervals of size (v −A)/l. That is

Rl(F, v) = A+
v −A
l
·

(
l−1∑
i=0

(1− F (xi)) + λ ·
l−1∑
i=0

√
F (xi)

)
,
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where xi = i
l · (v −A). So we have R(F, v) = liml→∞Rl(F, v).

For any given l, let i∗ be the index such that
∑
i>i∗(xi+A)/v <

∑l−1
i=0 F (xi)

and
∑
i>=i∗(xi +A)/v ≥

∑l−1
i=0 F (xi). We define F̂l as follows:

F̂l(x) =


0 , if x < xi∗∑l−1

i=0 F (xi)−
∑
i>i∗(xi +A)/v if x ∈ [xi∗ , xi∗+1)

(x+A)/v , if x ∈ [xi∗+1, v −A] .

It is straight-forward to check that F̂ (x) = liml→∞ F̂l(x), as described in
the statement of the lemma. We will show that for any l, Rl(F, v) ≥ Rl(F̂l, v).
Then the lemma follows by taking the limit, since Rl(F, v) → R(F, v), and
Rl(F̂ , v)→ R(F̂ , v). Figure 1(a) illustrates F̂ (x) (when we take the limit of l to
infinity).

By the construction of F̂l, it is easy to check that
∑l−1
i=0 F (xi) =

∑l−1
i=0 F̂l(xi)

and maxx{F̂l(x) · v − x} = A. Then in order to prove Rl(F, v) ≥ Rl(F̂l, v), it is

sufficient to prove that
∑l−1
i=0

√
F (xi) ≥

∑l−1
i=0

√
F̂l(xi). Let Q be the set of CDF

functions such that ∀Q ∈ Q,
∑l−1
i=0Q(xi) =

∑l−1
i=0 F (xi) and A = maxx≥0{Q(x) ·

v−x}, meaning further that Q(x) ≤ (x+A)/v, for all x ≥ 0. We will show that

F̂l(x) has the minimum value for the expression
∑l−1
i=0

√
F̂l(xi) within Q.

(a) (b)

Fig. 1. Figure (a) illustrates F̂ (x) = liml→∞ F̂l(x) and figure (b) shows how Q′ is
derived from Q.

Assume on the contrary that some other function Q ∈ Q has the minimum
value for

∑l−1
i=0

√
Q(xi) within Q and Q(xj) 6= F̂l(xj) for some xj . Let i1 be

the smallest index such that Q(xi1) > 0 and i2 be the largest index such that
Q(xi2) < (xi2 +A)/v. By the monotonicity of Q, we have i1 ≤ i2. Due to the as-

sumption that Q(xj) 6= F̂l(xj) for some xj and
∑l−1
i=0

√
Q(xi) ≤

∑l−1
i=0

√
F̂l(xi),

we get i1 6= i2. So i1 < i2 and Q(xi1) < Q(xi2) by the monotonicity of CDF
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functions. Now consider another CDF function Q′ such that Q′(xi) = Q(xi)
for all i 6= i1 ∧ i 6= i2, Q′(xi1) = Q(xi1) − ε and Q′(xi2) = Q(xi2) + ε where
ε = min{Q(xi1), (xi2 +A)/v−Q(xi2)}. Figure 1(b) shows how we modify Q to Q′.

It is easy to check Q′ ∈ Q and
∑l−1
i=0

√
Q(xi) >

∑l−1
i=0

√
Q′(xi) which contradicts

the optimality of Q. The inequality holds because of
√
a+
√
b >
√
a− c+

√
b+ c

for all 0 < c < a < b, which can be proved by simple calculations. ut

D Missing Parts of Section 4

Definition 36. (Isomorphism [19]). Let Γ1 and Γ2 be games in strategic form
with the same set of players [n]. For k = 1, 2, let (Aik)i∈[n] be the strategy sets
in Γk, and let (uik)i∈[n] be the utility functions in Γk. We say that Γ1 and Γ2

are isomorphic if there exists bijections φi : ai1 → ai2, i ∈ [n] such that for every
i ∈ [n] and every (a1, a2, . . . , an) ∈ ×i∈[n]Ai1,

ui1(a1, a2, . . . , an) = ui2(φ1(a1), φ2(a2), . . . , φn(an)) .

21 3 4 5 21 3 4 5

Fig. 2. The left part of the figure depicts some submodular function f , while the right
part depicts the modified concave function g. One can verify that g is concave if f is
submodular.

Proof of Lemma 12: For any valuation profile v and (randomized) allocation
A, we denote by SWv(A) the social welfare of allocation A under the valua-
tions v. For any fractional allocation x = (x1, . . . , xn), such that

∑
i xi = m,

let X(x) = (X1(x), . . . , Xn(x)) be the random allocation as computed by the
Random PSAM given the fractional allocation x. Also let o = (o1, . . . , on) and
O = (O1, . . . , On) be the optimal allocations in the divisible resource allocation
problem and in the multi-unit auction, respectively.

First we show that SWg(o) ≥ SWf (O). Consider the fractional allocation
o′ = (o′1, . . . , o

′
n), where o′i = Oi/m, for every i. Then it is easy to see that for

every i, gi(o
′
i) = fi(bOic) + (Oi−bOic) · (fi(bOic+ 1)−fi(bOic)) = fi(Oi), since

Oi is an integer. Therefore, SWg(o) ≥ SWg(o′) = SWf (O), by the optimality
of o.
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Now we show SWf (O) ≥ SWg(o). Note that for any fractional allocation
x, such that

∑
j xj = m, EX(x)[fi(Xi(x))] = fi(bxic) + (xi − bxic) · (fi(bxic +

1) − fi(bxic)) = gi(xi/m), for every i. By the optimality of O, SWf (O) ≥
EX(m·o)[SWf (X(m · o))] = SWg(o). ut

E Missing Proofs of Section 5

Here we give the proofs of theorems and lemmas of Sect. 5. Throughout this
section we assume that the players are ordered based on decreasing order of
their valuations, i.e. v1 ≥ v2 ≥ . . . ≥ vn. We also drop the word expected while
referring to the revenue or to the maximum bid.

Proof of Theorem 14:

Upper bound: Based on the results of [1], inefficient Nash equilibria only
exist when players’ valuations are in the form v1 > v2 = ... = vk > vk+1 ≥
... ≥ vn (with v2 > 0), where players k + 1 through n bid zero with probability
1. W.l.o.g., we assume that v1 = 1 and vi = v > 0, for 2 ≤ i ≤ k. Let P1 be
the probability that bidder 1 gets the item in any such mixed Nash equilibrium
denoted by B. Then the expected utility of bidder 1 in b ∼ B can be expressed
by E[u1(b)] = P1 · 1 − E[b1]. Based on the characterization in [1], no player
would bid above v in any Nash equilibrium and nobody bids exactly v with
positive probability. Therefore, if player 1 deviates to v, she will gets the item
with probability 1. By the definition of Nash equilibrium, we have E[u1(b)] ≥
E[u1(v,b−i)] = 1− v, resulting in P1 ≥ 1− v + E[b1].

It has been shown in the proof of Theorem 2C in [1], that E[b1] is minimized
when players 2 through k play symmetric strategies. Following their results, we
can extract the following equations (for a specific player i):

G1(x) =
x

v
∏
i′ 6=1,iGi′(x)

, ∀x ∈ (0, v] ;
∏
i′ 6=1

Gi′(x) = 1−v+x, ∀x ∈ (0, v] .

Recall that Gi′(x) is the CDF according to which player i′ bids in B. Since
players 2 through k play symmetric strategies, Gi′(x) should be identical for
i′ 6= 1. Then, for some i′ 6= 1,

G1(x) =
x

v ·Gk−2i′ (x)
=

x

v · (1− v + x)
k−2
k−1

, ∀x ∈ (0, v] .

Note that 1 − v + x ≤ 1, and so we get G1(x) ≤ x
v(1−v+x) (for two players,

G1(x) = x
v ) and

E[b1] ≥
∫ v

0

(
1− x

v (1− v + x)

)
dx = v−1− (1− v) ln(1− v)

v
.

Now we can derive that P1 ≥ 1−v
v ln 1

1−v .

For two players, E[b1] =
∫ v
0

(1− x/v) dx = v/2 and so P1 = 1− v/2.
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The expected social welfare in B is E[SW (b)] ≥ P1+(1−P1)v ≥ (1−v)2
v ln 1

1−v+

v. The expression, T (v) = (1−v)2
v ln 1

1−v + v, is minimized for v ≈ 0.5694 and
therefore, the price of anarchy is at most T (0.5694) ≈ 1.185. Particularly, for
two players, E[SW (b)] ≥ 1 − v/2 + v2/2, which is minimized for v = 1/2 and
therefore the price of anarchy for two players is at most 8/7.

Lower bound: Consider n players, with valuations v1 = 1 and vi = v > 0,
for 2 ≤ i ≤ n. Let B be the Nash equilibrium, where bidders bid according to
the following CDFs,

G1(x) =
x

v (1− v + x)
n−2
n−1

x ∈ [0, v] ; Gi(x) = (1− v + x)
1

n−1 x ∈ [0, v], i 6= 1 .

Note that Fi(x) =
∏
i′ 6=iGi′(x) is the probability of bidder i getting the item

when she bids x, for every bidder i.

F1(x) = (1− v+ x) x ∈ [0, v] ; Fi(x) =
x

v
x ∈ [0, v], i 6= 1 .

If player 1 bids any value x ∈ [0, v], her utility is u1 = F1(x) · 1 − x = 1 − v.
Bidding greater than v is dominated by bidding v. If any player i 6= 1 bids any
value x ∈ [0, v], her utility is ui = Fi(x)·v−x = 0. Bidding greater than v results
in negative utility. Hence, B is a Nash equilibrium. Let P1 be the probability
that bidder 1 gets the item in B, then

E[SW (b)] = 1 ·P1 + (1−P1)v = v+ (1−v)P1 = v+ (1−v)

∫ v

0

Gn−1i (x)dG1(x) .

When n goes to infinity, E[SW (b)] converges to v + (1 − v)
∫ v
0

1−v
v(1−v+x)dx =

v+ (1− v) 1−v
v ln 1

1−v = (1−v)2
v ln 1

1−v + v = T (v). If we set v = 0.5694, the price
of anarchy is at least T (v) ≈ 1.185.
For n = 2, E[SW (b)] = v+(1−v)

∫ v
0

1−v+x
v = v+(1−v)(1−v/2) = 1−v/2+v2/2,

which for v = 1/2 results in price of anarchy at least 8/7. ut

Proof of Theorem 15: Let k be any integer greater or equal to 2, such that
v1 ≥ v2 = . . . = vk ≥ vk+1 ≥ . . . ≥ vn. Let F (x) =

∏
iGi(x) be the CDF of the

maximum bid h. By the characterization of [1], in any mixed Nash equilibrium,
players with valuation less than v2 do not participate (always bid zero) and there
exist two players 1, i bidding continuously in the interval [0, v2]. Then, by [1],
F1 = (v1 − v2 + x)/v1 and Fi(x) = x/v2, for any x ∈ (0, v2]. Therefore, we get

F (x) = Fi(x)Gi(x) =
x

v2
Gi(x) .

In the proof of Theorem 2C in [1], it is argued that Gi1(x) is maximized (and
therefore the maximum bid is minimized) when all the k players play symmetri-
cally (except for the first player, in the case that v1 > v2). So, F (x) is maximized
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for Gi =
(∏

i′ 6=1Gi′
) 1

k−1

= F
1

k−1

1 =
(
v1−v2+x

v1

) 1
k−1

. Finally we get

E[h] =

∫ ∞
0

(1− F (x))dx ≥
∫ v2

0

(
1− x

v2

(
v1 − v2 + x

v1

) 1
k−1

)
dx

≥ v2 −
∫ v2

0

x

v2
dx =

1

2
v2 .

The same lower bound also holds for the revenue, which is at least as high as
the maximum bid. This lower bound is tight for the maximum bid, as indicated
by our analysis, when k goes to infinity and for the symmetric mixed Nash
equilibrium. In the next lemma, we show that this lower bound is also tight for
the revenue. ut

Proof of Lemma 16: In [1], the authors provide results for the revenue in all
possible equilibria. For the case that v1 = v2, the revenue is always equal to v2.
To show a tight lower bound, we consider the case where v1 > v2 and there exist
k players with valuation v2 playing symmetrically in the equilibrium, by letting
k go to infinity. For this case, based on [1], the revenue is equal to3∑

i

E[bi] = v2 + (1− v)E[b1] ,

where E[b1] =
∫ v
0

(1−G1(x)) dx. From the proof of Theorem 15 we can derive

that G1(x) = F (x)/F1(x) = x
v (1− v + x)

1
k−1−1 = x

v (1− v + x)
−1

, when k goes
to infinity. By substituting we get,∑

i

E[bi] = v2 + (1− v)

∫ v

0

(
1− x

v
(1− v + x)

−1
)
dx

= v2 + (1− v)

(
v − 1

v
(v + (1− v) ln(1− v))

)
= 2v − 1− (1− v)2

v
ln(1− v)

= v − (1− v)

(
1 +

1− v
v

ln(1− v)

)
.

By taking limits, we finally derive that limv→0

(∑
i E[bi]
v

)
= 1/2. The same tight-

ness result also holds for the maximum bid, which is at most the same as the
revenue. ut

Proof of Theorem 17: We will assert the statement of the theorem for the
valuation profile (1, v, 0, 0, . . . , 0), where v ∈ (0, 1) is the second highest value. It
is safe to assume that q2 ∈ [0, q1) 4. We show that the following bidding profile is

3 For simplicity we assume v1 = 1 and v2 = v.
4 Otherwise, consider the tie-breaking rule that allocates the item equiprobably. Then

for q2 ≥ q1, the strategy profile where all players bid zero is strictly dominant.
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a mixed Nash equilibrium. The first two bidders bid on the interval [0, v(q1−q2)]
and the other bidders bid 0. The CDF of bidder 1’s bid is G1(x) = x

v(q1−q2) and

the CDF of bidder 2’s bid is G2(x) = x/(q1 − q2) + 1 − v. It can be checked
that this is a mixed Nash equilibrium by the following calculations. For every
bid x ∈ [0, v(q1 − q2)],

u1(x) = G2(x) · q1 + (1−G2(x)) · q2 − x = q1 − v(q1 − q2) ,

u2(x) = G1(x) · q1v + (1−G1(x)) · q2v − x = q2v .

The revenue is∫ v(q1−q2)

0

(1−G1(x))dx+

∫ v(q1−q2)

0

(1−G2(x))dx

=

∫ v(q1−q2)

0

(
1− x

v(q1 − q2)

)
dx+

∫ v(q1−q2)

0

(
1−

(
x

q1 − q2
+ 1− v

))
dx

=
v(q1 − q2)

2
+
v2(q1 − q2)

2
.

When v goes to 0, the revenue go to v(q1 − q2)/2 < v/2 since q1 − q2 < 1.
Obviously, the same happens with the maximum bid, which is at most the same
as the revenue. ut

F Conventional Procurement

In this section we give bounds on the expected revenue and maximum bid of
the single-item first-price auction. In the following, we drop the word expected
while referring to the revenue or to the maximum bid.

Theorem 37. In any mixed Nash equilibrium, the revenue and the maximum
bid lie between the two highest valuations. There further exists a tie-breaking rule,
such that in the worst-case, these quantities match the second highest valuation
(This can also be achieved, under the no-overbidding assumption).

Lemma 38. In any mixed Nash equilibrium, if the expected utility of any player
i with valuation vi is 0, then with probability 1 the maximum bid is at least vi.

Proof. Consider any mixed Nash equilibrium b ∼ B and let h = maxi{bi} be the
highest bid; h is a random variable induced by B. For the sake of contradiction,
assume that h is strictly less than vi with probability p > 0. Then, there exists
ε > 0 such that h < vi−ε with probability p. Consider now the deviation of player
i to pure strategy si = vi − ε. si would be the maximum bid with probability p
and therefore the utility of player i would be at least p(vi− (vi− ε)) = p · ε > 0.
This contradicts the fact that B is an equilibrium and completes the proof of
lemma. ut

Lemma 39. In any mixed Nash equilibrium, if v is the highest valuation, any
player with valuation strictly less than v has expected utility equal to 0.
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Proof. In [8] (Theorem 5.4), they proved that the price of anarchy of mixed
Nash equilibria, for the single-item first-price auction, is exactly 1. This means
that the player(s) with the highest valuation gets the item with probability 1.
Therefore, any player with valuation strictly less than v gets the item with zero
probability and hence, her expected utility is 0. ut

Consider the players ordered based on their valuations so that v1 ≥ v2 ≥
v3 ≥ . . . ≥ vn. In order to prove Theorem 37, we distinguish between two cases:
i) v1 > v2 and ii) v1 = v2.

Lemma 40. If v1 > v2, the maximum bid of any mixed Nash equilibrium, is at
least v2 and at most v1. If we further assume no-overbidding, the maximum bid
is exactly v2.

Proof. If v1 > v2, by Lemma 39, the expected utility of player 2 equals 0. From
Lemma 38, the highest bid is at least v2 with probability 1. Moreover, if there
exist players bidding above v1 with positive probability, then at least one of them
(whoever gets the item with positive probability) would have negative utility for
that bid and would prefer to deviate to 0; so, the bidding profile couldn’t be an
equilibrium. Therefore, the maximum bid lies between v1 and v2.

If we further assume no-overbidding, nobody, apart from player 1, would bid
above v2. So, the same hold for player 1, who has an incentive to bid arbitrarily
close to v2. ut

Corollary 41. If v1 > v2, there exists a tie breaking rule, under which the
maximum bid of the worst-case mixed Nash equilibrium is exactly v2.

Proof. Due to Lemma 40, it is sufficient to show a tie breaking rule, where there
exists a mixed Nash equilibrium with highest bid equal to v2. Consider the tie-
breaking rule where, in a case of a tie with player 1 (the bidder of the highest
valuation), the item is always allocated to player 1. Under this tie-breaking rule,
the pure strategy profile, where everybody bids v2 is obviously a pure Nash
equilibrium, with v2 being the maximum bid. ut

Lemma 42. If v1 = v2, the maximum bid of any mixed Nash equilibrium, equals
v2.

Proof. Consider a set S of k ≥ 2 players having the same valuation v1 = v2 =
. . . = vk = v and the rest having a valuation strictly less than v. For any mixed
Nash equilibrium b ∼ B and any player i, let Gi and Fi be the CDFs of bi
and maxi′ 6=i bi′ , respectively. We define li = inf{x|Gi(x) > 0} to be the infimum
value of player’s i support in B. We would like to prove that maxi li = v. For
the sake of contradiction, assume that maxi li < v (Assumption 1).

We next prove that, under Assumption 1, li = l for any player i ∈ S and
for some 0 ≤ l < v. We will assume that lj < li for some players i, j ∈ S
(Assumption 2) and we will show that Assumption 2 contradicts Assumption 1.
There exists ε > 0 such that lj + ε < li. Moreover, based on the definition of
lj , for any ε′ > 0, Gj(lj + ε′) > 0 and so Gj(lj + ε) > 0. When player’s j bid
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is derived by the interval [lj , lj + ε], she receives the item with zero probability,
since li > lj + ε. Therefore, for any bid of her support that is at most lj + ε, her
utility is zero (Gj(lj + ε) > 0, so there should be such a bid). Since B is a mixed
Nash equilibrium, her total expected utility should also be zero. In that case,
Lemma 38 contradicts Assumption 1, and therefore Assumption 2 cannot be
true (under Assumption 1). Thus, for any player i ∈ S, li = l for some 0 ≤ l < v.

Moreover, Lemma 39 indicates that no player i /∈ S bids above l with positive
probability, i.e. Gi(l) = 1 for all i /∈ S. We now show that for any i ∈ S, Gi
cannot have a mass point at l, i.e. Gi(l) = 0 for all i ∈ S.
Case 1. If Gi(l) > 0 for all i, then p =

∏
iGi(l) > 0 is the probability that

the highest bid is l, or more precisely, it is the probability that all players in S
bid l and a tie occurs. Given that this event occurs, there exists a player j ∈ S
that gets the item with probability pj strictly less than 1 (this is the conditional
probability). Therefore, player j has an incentive to deviate from l to l + ε, for
ε < (1− pj)(v− l) (so that pj(v− l) < v− (l+ ε)); this contradicts the fact that
B is an equilibrium.
Case 2. If Gi(l) > 0 and Gj(l) = 0 for some i, j ∈ S, then l is in the support
of player i, but she does never receives the item when she bids l, since player j
bids above l with probability 1. Therefore, the expected utility of player i is 0
and due to Lemma 38 this cannot happen under Assumption 1.

Overall, we have proved so far that, under Assumption 1 (that now has
become l < v), Gi(l) = 0 for all i ∈ S and Gi(l) = 1 for all i /∈ S. Since
k ≥ 2, Fi(l) =

∏
i′ 6=iGi′(l) = 0 for all i. Consider any player i ∈ S and let ui

be her expected utility. Based on the definition of li, for any ε > 0, there exists
x(ε) ∈ [l, l + ε], such that x(ε) is in the support of player i. Therefore, ui ≤
Fi(x(ε))(v−x(ε)) ≤ Fi(l+ε)(v−l). As Fi is a CDF, it should be right-continuous
and so for any δ > 0, there exists some ε > 0, such that Fi(l+ ε)(v− l) < δ and
therefore, ui < δ. We can contradict Assumption 1, right away by using Lemma
38, but we give a bit more explanation. Assume that, in B, the maximum bid
h is strictly less than v with probability p > 0. Then, there exists some ε′ > 0,
such that h < v − ε′ with probability p. If we consider any δ < p(v − ε′), it
is straight forward to see that player i has an incentive to deviate to the pure
strategy v− ε′. Therefore, we showed that Assumption 1 cannot hold and so the
highest bid is at least v with probability 1. Similar to the proof of Lemma 40,
nobody will bid above v in any mixed Nash equilibrium. ut
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