15 research outputs found
Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation
Visible luminescence is observed from the composite of SiO2 with embedded silicon nanocrystallites produced by femtosecond laser irradiation of hydrogenated amorphous silicon (a-Si:H) film in air. The photoluminescence originates from the defect states at the interface between silicon crystallites and SiO2 matrix. The method could be used for fabrication of luminescent layers to increase energy conversion of a-Si:H solar cells
Reconsidering figures of merit for performance and stability of perovskite photovoltaics
The development of hybrid organic-inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination-darkness cycling. Quantifying the performance and stability of cells exhibiting significant diurnal performance variations is challenging. We report the outdoor stability measurements of two types of devices showing either reversible photo-degradation or reversible efficiency improvement under sunlight. Instead of the initial (or stabilized) efficiency and T as the figures of merit for the performance and stability of such devices, we propose using the value of the energy output generated during the first day of exposure and the time needed to reach its 20% drop, respectively. The latter accounts for both the long-term irreversible degradation and the reversible diurnal efficiency variation and does not depend on the type of process prevailing in a given perovskite cell
Recommended from our members
Roadmap on commercialization of metal halide perovskite photovoltaics
Perovskite solar cells (PSCs) represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of the relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path toward commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and the progress made toward addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field, which covers a broad range of topics related to PSC commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and move forward toward addressing the outstanding challenges in this fast-developing field
Femtosecond laser induced crystallization of hydrogenated amorphous silicon for photovoltaic applications
Femtosecond laser assisted crystallization is used to produce nanocrystalline silicon from hydrogenated amorphous silicon. Changes in structural, optical, electrical and photoelectric properties of laser modified amorphous silicon were investigated. Laser treated films were characterized using atomic force microscopy, Raman spectroscopy, constant photocurrent method and current measurements. Crystalline volume fraction as well as conductivity of laser irradiated films increased with the applied laser fluence, while hydrogen concentration in the films was found to decrease with the fluence. Spectral dependences of absorption coefficient, measured by constant photocurrent method, are discussed in terms of hydrogen out-effusion and additional defect state formation in silicon films during the laser treatment
Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation
Visible luminescence is observed from the composite of SiO2 with embedded
silicon nanocrystallites produced by femtosecond laser irradiation of
hydrogenated amorphous silicon (a-Si:H) film in air. The photoluminescence
originates from the defect states at the interface between silicon crystallites
and SiO2 matrix. The method could be used for fabrication of luminescent layers
to increase energy conversion of a-Si:H solar cells
Structural and electrophysical properties of femtosecond laser exposed hydrogenated amorphous silicon films
This paper studies the effect of femtosecond laser treatment in air of hydrogenated amorphous silicon thin films (a-Si:H) on their structural, electrical and photoelectric properties. The possibility of laser-induced crystallization of a-Si:H films with controlled crystalline volume fraction was shown. A sufficient increase of dark conductivity was observed for laser treated a-Si:H films which crystallinity exceeds 7%. Such increase was attributed to change in conductivity mechanism. However, spectral dependences of absorption coefficient did not show any qualitative changes with the laser fluence increase. It was found that spallation and oxidation of the film took place when laser fluence became reasonably high
Reconsidering figures of merit for performance and stability of perovskite photovoltaics
The development of hybrid organic-inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination-darkness cycling. Quantifying the performance and stability of cells exhibiting significant diurnal performance variations is challenging. We report the outdoor stability measurements of two types of devices showing either reversible photo-degradation or reversible efficiency improvement under sunlight. Instead of the initial (or stabilized) efficiency and T as the figures of merit for the performance and stability of such devices, we propose using the value of the energy output generated during the first day of exposure and the time needed to reach its 20% drop, respectively. The latter accounts for both the long-term irreversible degradation and the reversible diurnal efficiency variation and does not depend on the type of process prevailing in a given perovskite cell
Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes
The
operational stability of perovskite solar cells (PSCs) remains a limiting
factor in their commercial implementation. We studied the long-term
outdoor stability of ITO/SnO<sub>2</sub>/Cs<sub>0.05</sub>((CH<sub>3</sub>NH<sub>3</sub>)<sub>0.15</sub>(CH(NH<sub>2</sub>)<sub>2</sub>)<sub>0.85</sub>)<sub>0.95</sub>PbI<sub>2.55</sub>Br<sub>0.45</sub>/spiro-OMeTAD/Au cells, as well as the dynamics of their degradation,
under simulated sunlight indoors and their recovery in the dark. The
extent of overall degradation was found to depend on processes occurring
both under illumination and in the dark, i.e., during the daytime
and nighttime, with the dynamics varying with cell aging. Full recovery
of efficiency in the dark was observed for cells at early degradation
stages. Further cell degradation resulted in recovery times much longer
than one night, appearing as irreversible degradation under real operational
conditions. At later degradation stages, very different dynamics were
observed: short-circuit current density and fill factor exhibited
a pronounced drop upon light turn-off but strong improvement under
subsequent illumination. The interplay of reversible and irreversible
degradation processes with different recovery dynamics was demonstrated
to result in changes in the cell’s diurnal PCE dependence during
its operational lifespan under real sunlight conditions