207 research outputs found

    A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection

    Get PDF
    The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection

    Symposium in Memory of David H. Vernon: An Introduction

    Get PDF

    Creating A Research Writing Environment With Personalized Library Instruction

    Get PDF
    Inman E. Page Library participated in the ARCL\u27s Assessment in Action project led by Academic Librarian kYmberly Keeton. This is the final project poster presented by Ms. Keeton at ALA\u27s 2016 Annual at Orlando, Florida. The poster shows how one faculty library group comes together to explore assessing students’ writing intensive projects in three academic semesters within a scholarly learning space at a Historically Black College University

    Budesonide Foam Has a Favorable Safety Profile for Inducing Remission in Mild-to-Moderate Ulcerative Proctitis or Proctosigmoiditis.

    Get PDF
    BackgroundBudesonide foam, a rectally administered, second-generation corticosteroid with extensive hepatic first-pass metabolism, is efficacious for the treatment of mild-to-moderate ulcerative proctitis and ulcerative proctosigmoiditis.AimThe aim of this study was to comprehensively assess the safety and pharmacokinetic profile of budesonide foam.MethodsData from five phase III studies were pooled to further evaluate safety, including an open-label study (once-daily treatment for 8 weeks), an active-comparator study (once-daily treatment for 4 weeks), and two placebo-controlled studies and an open-label extension study (twice-daily treatment for 2 weeks, then once daily for 4 weeks). Data from the placebo-controlled studies and two phase I studies (i.e., patients with mild-to-moderate ulcerative colitis and healthy volunteers) were pooled to evaluate the pharmacokinetics of budesonide foam.ResultsA similar percentage of patients reported adverse events in the budesonide foam and placebo groups, with the majority of adverse events being mild or moderate in intensity (93.3 vs 96.0%, respectively). Adverse events occurred in 41.4 and 36.3% of patients receiving budesonide foam and placebo, respectively. Mean morning cortisol concentrations remained within the normal range for up to 8 weeks of treatment; there were no clinically relevant effects of budesonide foam on the hypothalamic-pituitary-adrenal axis. Population pharmacokinetic analysis demonstrated low systemic exposure after budesonide foam administration.ConclusionsThis integrated analysis demonstrated that budesonide foam for the induction of remission of distal ulcerative colitis is safe overall, with no clinically relevant effects on the hypothalamic-pituitary-adrenal axis

    Carnosine increases insulin-stimulated glucose uptake and reduces methylglyoxal-modified proteins in type-2 diabetic human skeletal muscle cells

    Get PDF
    Type-2 diabetes (T2D) is characterised by a dysregulation of metabolism, including skeletal muscle insulin resistance, mitochondrial dysfunction, and oxidative stress. Reactive species, such as methylglyoxal (MGO) and 4-hydroxynonenal (4-HNE), positively associate with T2D disease severity and can directly interfere with insulin signalling and glucose uptake in skeletal muscle by modifying cellular proteins. The multifunctional dipeptide carnosine, and its rate-limiting precursor ÎČ-alanine, have recently been shown to improve glycaemic control in humans and rodents with diabetes. However, the precise mechanisms are unclear and research in human skeletal muscle is limited. Herein, we present novel findings in primary human T2D and lean healthy control (LHC) skeletal muscle cells. Cells were differentiated to myotubes, and treated with 10 mM carnosine, 10 mM ÎČ-alanine, or control for 4-days. T2D cells had reduced ATP-linked and maximal respiration compared with LHC cells (p = 0.016 and p = 0.005). Treatment with 10 mM carnosine significantly increased insulin-stimulated glucose uptake in T2D cells (p = 0.047); with no effect in LHC cells. Insulin-stimulation increased MGO-modified proteins in T2D cells by 47%; treatment with carnosine attenuated this increase to 9.7% (p = 0.011). There was no effect treatment on cell viability or expression of other proteins. These findings suggest that the beneficial effects of carnosine on glycaemic control may be explained by its scavenging actions in human skeletal muscle

    Optimising the electrochemical reduction of CO2 to oxalic acid in propylene carbonate

    Get PDF
    Carbon dioxide (captured from the atmosphere or obtained by other routes) constitutes a useful and widely-available building block for producing numerous valuable chemicals and fuels. Electrochemical methods for carbon dioxide reduction offer advantages in terms of scalability, the prospect of coupling directly to renewable power sources and the ability to reduce carbon dioxide without the co-production of harmful by-products. Of the various possible products of carbon dioxide electroreduction, oxalate/oxalic acid is an especially attractive target on account of its wide use in a number of chemical and pharmaceutical processes. Herein, we report the results of a study on carbon dioxide electroreduction to oxalate/oxalic acid in a propylene carbonate solvent system, catalysed by the addition of benzonitrile. Our results show that the use of benzonitrile as a homogeneous electrocatalyst improves the Faradaic and reaction yields of oxalate/oxalic acid production, as well as the area-normalised rate of formation of oxalate/oxalic acid, giving a new record rate of formation of 1.65 ± 0.35 mM cm−2 h−1 (averaged over 1 h) at a voltage of ‒2.7 V vs SCE (‒2.46 V vs SHE). Such metrics in turn suggest that the electrochemical reduction of carbon dioxide to C2+ products via oxalate could be a promising avenue for further development for the sustainable production of key chemical feedstocks

    A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis.

    Get PDF
    DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT), with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication. Blocking or immunodepletion of xNuRD inhibits DNA replication initiation in isolated nuclei in vitro and causes inhibition of DNA synthesis, developmental delay, and embryonic lethality in early embryos. xNuRD activity declines after the MBT, coinciding with dissociation of the complex and emergence of Y RNA-dependent initiation. Our data thus reveal an essential role for a NuRD complex as a DNA replication factor during early Xenopus development

    Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    Get PDF
    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data

    High-impact jumping mitigates the short-term effects of low energy availability on bone resorption but not formation in regularly menstruating females:A randomized control trial

    Get PDF
    Low energy availability (LEA) is prevalent in active individuals and negatively impacts bone turnover in young females. High-impact exercise can promote bone health in an energy efficient manner and may benefit bone during periods of LEA. Nineteen regularly menstruating females (aged 18–31 years) participated in two three-day conditions providing 15 (LEA) and 45 kcals kg fat-free mass−1 day−1 (BAL) of energy availability, each beginning 3 ± 1 days following the self-reported onset of menses. Participants either did (LEA+J, n = 10) or did not (LEA, n = 9) perform 20 high-impact jumps twice per day during LEA, with P1NP, ÎČ-CTx (circulating biomarkers of bone formation and resorption, respectively) and other markers of LEA measured pre and post in a resting and fasted state. Data are presented as estimated marginal mean ± 95% CI. P1NP was significantly reduced in LEA (71.8 ± 6.1–60.4 ± 6.2 ng mL−1, p 0.999, d = 0.19), and these effects were significantly different (time by condition interaction: p = 0.007). Morning basal bone formation rate is reduced following 3 days LEA, induced via dietary restriction, with or without high-impact jumping in regularly menstruating young females. However, high-impact jumping can prevent an increase in morning basal bone resorption rate and may benefit long-term bone health in individuals repeatedly exposed to such bouts
    • 

    corecore