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The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward
addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine
the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the
model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model
selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with
emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/
pharmacodynamic model selection.

Introduction

Population pharmacokinetic/pharmacodynamic (PK/PD)
model building is the process by which theoretical under-
standing of the pharmacology of a drug and empiric analy-
sis of experimental data yields a set of equations that
describes the pharmacokinetics and/or pharmacodynam-
ics of a population of subjects taking a drug. In a more
general sense, PK/PD model building is an optimization
problem. The goal of this optimization problem is to find
the model (e.g. number of compartments, variance terms,
lag time, indirect response model, covariates, mixture
models etc.) that best describes the data according to
some objective (e.g. goodness of fit) or subjective (e.g. it is
biologically reasonable) criteria.

Historically, the algorithm used for PK/PD modelling
building begins by testing a trivial model (often a one
compartment, first order absorption model, with no
covariates) and then sequentially adding single features to
that model and testing if that addition results in a signifi-
cantly better description of the data.This process has been

used since the software package NONMEM®1 (Nonlinear
Mixed Effect Model) was released in the late 1970s.Figure 1
shows a diagram of the model building algorithm from a
recent NONMEM manual.2 This step wise, or forward addition
approach to model building, is well established in linear [1]
and logistic regression [2]. Mixed effect models, however,
are more complex than linear models.

The model building process for mixed effects
pharmacokinetic models typically starts with selecting
structural model features such as compartments and lag
times. With the basic structure of the model set, a similar
step wise addition algorithm is then used to add
covariates.The decision about whether to include a feature
(a compartment, a lag time or a covariate) is typically based
on a combination of objective criteria (most importantly
an improvement in the goodness of fit criteria) and subjec-
tive criteria (does the addition improve some bias seen in

1NONMEM is the property of Icon PLC.
2Original drawing by the NONMEM project group, Lewis Sheiner, University
of California, San Francisco, reproduced with permission from Icon PLC.
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diagnostic plots) for the models with vs. without the addi-
tional features. While this sequential approach to model
building has been used historically, there is no statistical
basis for this particular sequence. Rather, the addition of
statistical components at the end of the model building
process is due to the finding that, in early versions of
NONMEM, adding additional variance features added greatly
to the computational time. Also, the run time costs on the

shared mainframe originally used to run NONMEM at UCSF
in the 1970s were lower if the executable file was smaller.
This provided a practical, rather than statistical, advantage
to having fewer random effects because the size of many
of the large arrays in NONMEM depends on the number of
random effects.3 This algorithm has remained largely
unchanged for more than 30 years despite the fact that at
least some of the rationale for it has long since changed.

This PK/PD model building algorithm is, in many ways,
analogous to the parameter optimization algorithm used
in many of the population pharmacokinetic software pack-
ages. For example, the minimization algorithm, which is
used for the minimization step in NONMEM [3], starts with
initial estimates for all parameters and then makes a small
change in the value of each parameter. The ‘goodness’
(minus twice the log likelihood of the data given the
model, −2ll, in this case) of the resulting model is then
calculated. The search then moves in the direction of
values in which the goodness of fit statistic is better. This
continues until no further improvement is seen. Analo-
gously, the traditional step wise PK/PD model building
algorithm starts with an initial model which is usually very
simple. The algorithm then makes a small change in the
model,usually adding a single effect (e.g.a peripheral com-
partment, a single covariate relationship) and calculates
the ‘goodness’ (by objective and subjective criteria) of the
resulting model. Changes that significantly improve the
model are retained and the process is repeated until no
further significant improvement is seen. This step wise
approach to model optimization is referred to as‘hill climb-
ing’ because, as in the case of parameter estimation, the
optimization algorithm is constantly moving in the direc-
tion of the highest rate of improvement in the‘goodness’of
the model.

It is well established that the selection of appropriate
initial estimates are important in non-linear regression to
avoid local minima. Because of its similarity to gradient-
based parameter optimization, the minima found using
‘hill climbing’ model structure optimization also depends
on the initial starting point. Figure 2 demonstrates the risk
of arriving at a local minimum. The algorithm finds the
slope of the objective function at the initial estimate and
proceeds downhill, ultimately arriving at a minimum.
However, whether the minimum is the global minimum or
a local minimum depends on the initial guess. Any change
in the sign of the gradient between the initial estimates
and the global minimum will provide an effective barrier (a
‘peak’, or in multiple dimension, a ‘ridge’) to the exploration
of the region around the global minimum, as crossing that
region would require the algorithm to move uphill, rather
than downhill.Typically (although not always the case) the
closer the initial estimates are to the global minimum, the
more likely that the assumption of a monotonically down-
hill objective function surface is met. This assumption of a

3Personal communication, Alison Boeckmann.
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Diagram of model building algorithm from volume 5 NONMEM manuals.
Reproduced with permission from Icon PLC. In the original description of
the algorithm, statistical features (variance terms) were added after the
structure was final for practical reasons
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monotonically downhill objective function surface is
known as the convexity assumption [3], that no matter
where you start, it will always be continuously downhill to
the global minimum. For relatively simple models, espe-
cially with rich data, there are methods for obtaining initial
estimates (e.g. curve stripping). However, adequate initial
estimates for complex models is a challenge. Frequently
the best solution is simply to try many initial estimates and
chose the set that results in the best goodness of fit. For
complex models, there is no way of knowing if the result-
ing minimum is a global or local minimum without testing
every possible scenario.

Similarly, there is risk of being caught in a local
minimum in a hill climbing search algorithm in a discrete
search space, especially if the starting point of the search is
far from the global minimum. The fundamental assump-
tion behind a hill climbing algorithm is the independence
of the different effects in the search space [4]. This inde-
pendence between effects is the correlate of the convexity
assumption in gradient-based optimization. For example,
in the case of PK/PD models, the central assumption is that
volume will be (or will not be) a function of weight regard-
less of presence of other features (number of compart-
ments, variance terms, lag time, mixture models etc.), and
so it does not matter when this effect is tested (e.g. before
or after the number of compartments, before or after the
variance terms, etc.), the result will be the same. Impor-
tantly, this assumption, like the convexity assumption in
real space, has been shown to be incorrect [5]. Also, the
structural model search is typically started at a point of
convenience (a trivial model) rather than, as in the case of

parameter estimation, near the anticipated global
minimum, resulting in a higher likelihood that the convex-
ity assumption is not met. Unlike the common practice of
using multiple initial estimates for parameter estimation, in
traditional model selection, it is uncommon to start the
model search from multiple initial models.

An important difference between parameter estima-
tion in NONMEM and the process of searching for the
optimal structural model is that the parameter space is
generally the set of positive real numbers while the model
structure space is discrete valued. That is, a model cannot
include fractions of compartments (e.g. 1.462 compart-
ments) but the number of compartments must be an
integer (such as a one or two compartment model). Simi-
larly a between subject variance term is either present or
absent. Because the structural search space is discrete,
there is no gradient along which to search. Therefore, dif-
ferent search algorithms must be used.

The discrete search space algorithms are divided into
local search and global search.The distinction being based
on whether any given model is compared only with
model(s) similar to it or to model(s) that may be very dif-
ferent. Global search algorithms tend to be much more
robust to local minima.The local search algorithms include:

• Hill climbing [4]
• Tabu search [6]

In the hill climbing algorithm, the assumption is that if a
feature is found to be valuable in one model, it is valuable
in all other models and does not need to be tested again,
that is, the convexity assumption. For example, if weight is
found to be a predictor of volume in a one compartment
model, the hill climbing algorithm assumes that weight
will be similarly predictive of volume in a two compart-
ment model.The hill climbing algorithm is a type of ‘greedy
algorithm’ [7]. The definition of a greedy algorithm is ‘An
algorithm that always takes the best immediate or local
solution while finding an answer’.4 Greedy algorithms
proceed rapidly to the nearest local optimum. Locating the
global optimum with a greedy algorithm depends entirely
on starting the search within some local area that it is
convex to the global minimum, that is there are no ‘ridges’
between the initial model and the global minimum, which
would prevent the search from proceeding in that direc-
tion. If this is not the case, greedy algorithms may find
less-than-optimal solutions. The hill climbing algorithm is
the most efficient search algorithm. It will arrive at the final
model with the fewest number of evaluations because of
the assumption that each hypothesis need only be tested
a single time. The computational time required for a hill
climbing search increases only linearly with the size of the
search space.

4http://xlinux.nist.gov/dads/HTML/greedyalgo.html, retrieved 29 January
2013.
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The list of global search algorithms commonly used to
search discrete space includes:

• Exhaustive search
• Simulated annealing [8]
• Particle swarm optimization [9, 10]
• Genetic algorithm (GA) [11]

In an exhaustive search, every possible combination of fea-
tures is tested. The assumption is that testing a feature in
one model is completely uninformative about the value of
that feature in any other model. For example, finding that
weight is a predictor of volume in a one compartment
model provides no information about whether it will be a
predictor in a two compartment model. An exhaustive
search is a completely robust search and is guaranteed to
find the best solution. However, the exhaustive search is
limited by computational time which increases exponen-
tially with the size of the search space.

Other global search methods (e.g. simulated annealing,
GA and particle swarm optimization) fall between these
two extremes of hill climbing and exhaustive search in
terms of the assumptions, the robustness of the search,
and the computational burden. For example, if a GA finds
weight to be a useful predictor of volume in one model this
suggests, but does not guarantee, that weight is predictive
of volume in other models.This hypothesis must be tested
in many (usually thousands) of other models before being
accepted or finally rejected. Among the global search algo-
rithms, the GA was chosen as an approach for model selec-
tion in population PK/PD model building. The reasons for
this selection include

• A clear method for implementing creation of NONMEM

control files from the algorithm
• Easily parallelized
• The underlying algorithm is already understood by

biologists
• Well documented, widely used, well researched

algorithm

Genetic algorithm

GA is an attempt to reproduce the naturally occurring pro-
cesses of evolution and survival of the fittest to find a near
optimal solution [11]. To implement a GA, the model is
coded as a binary string.This coding for an example popu-
lation pharmacokinetic model is depicted in Figure 3. In
the case of population pharmacokinetics, the search space
consists of all the candidate model features that would be
considered feasible. These might include:

• Number of compartments (the first ‘gene’, two bits in
Figure 3)

• Covariates and different forms of covariate relationships
(e.g. exponential, linear or power functions, the remaining
‘genes’, one or two bits in Figure 3)

• Different pharmacodynamic models (e.g. indirect
response models)

• Variance terms including within subject variability,
residual variance, and between subject variability

• Covariance between variability terms
• Mixture models
• Different initial estimates for parameters

If there are two possible values for a candidate model
feature (e.g. presence or absence of an effect of gender on
clearance with one set of initial estimate(s)), only a single
bit is needed. There are many cases when there are more
than two options. For example for a covariate relationship
there may be:
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• no covariate relationship
• a linear covariate relationship
• an exponential relationship
• a power relationship
• different initial estimates for any of the above relation-

ships. (The inclusion of different initial estimates for
parameters in the search space is an important feature of
a global search algorithm because it can be very difficult
to determine good initial parameter estimates for
complicated pharmacokinetic and especially pharmaco-
dynamic models. A global search of initial estimates for
those parameters effectively addresses this issue.)

In these cases more than one bit will be needed. The
number of bits required for a set of candidate features will
be Nbits ≥ ln / ln(2) where Nbits is the number of bits
required and N is the number of options. If there are five
options, three bits will be needed. Table 1 gives examples
of how candidate model features might be coded into a bit
string and the corresponding NONMEM/NMTRAN code for
those features. Once the search space is defined, a ‘popu-
lation’ of models is created by randomizing the bits in the
each genome in the population to 0 s and 1 s. Each bit
string is then decoded into the corresponding NONMEM

control file that represents each model, creating several
hundred models with randomly selected features. These
models are then run in NONMEM.

For a simple GA, two operations, crossover and muta-
tion, are applied to these parent candidate models to
create the next generation of candidate models [10]. The
crossover operator creates two new candidate models
from two parent models by randomly selecting a location
on the bit string of the parents (same location on both
parents) and swapping all of the bits after that location
between the two parents to create two new candidates.
As described in the next section, the selection of a parent
candidate from the pool of possible candidates is based
on its NONMEM output where candidate models that are
more desirable have a higher likelihood of being selected
for crossover. The mutation operator randomly changes a

bit value in a candidate model (i.e. 0 become 1 and vice
versa).

Fitness
Much like the goodness of fit metric drives the param-

eter optimization in non-linear regression, an objective
measure of model ‘goodness’ drives the search for the
optimal model structure in global search algorithms. In GA
this measure of model ‘goodness’ is called the fitness, from
the same term used in population ecology [12] to describe
how well an organism is adapted to the environment.More
specifically, in population ecology the fitness is defined as
the number of copies of an organism’s genome that are
expected to contribute to the next generation (and to sub-
sequent generations). A fitness greater than 1 suggests
that genetic material of that individual will tend to increase
in frequency in the population while a fitness less than 1
suggests that genetic material of that individual will even-
tually be eliminated from the population.

In using a GA to search for the optimal model, the
organisms are individual models and the algorithm works
with a ‘population’ of individual models. Each organism
(model) will have some objective measure of fitness (a
function of overall model goodness) that will drive the
number of copies of that model’s genome that are contrib-
uted to the next generation of models. In GA the fitness
function is problem specific. In the case of mixed effects
models, there are a number of common metrics used to
measure ‘goodness’ of a model. These include:

• Goodness of fit measures (usually −2ll)
• Parsimony, measured as the number of estimated fixed

(theta) and random (omega and sigma) effect parameters
• Other ‘quality of solution’ metrics such as successful con-

vergence,positive definite covariance matrix (e.g.success-
ful covariance step in NONMEM) lack of estimation
correlations between parameters and suitable condition
number (ratio of largest to smallest eigenvalues)

• Cross validation −2ll [13] [14],
• Normalized prediction distribution errors (NDPE) global

P value [15]

Table 1
Code of model features and corresponding NONMEM/NMTRAN code

Model feature Feature options Bit string code NONMEM code

Number of
compartments

One compartment 0.0 ‘ADVAN1’
Two compartment, parameterized as K21 and K12 0.1 ‘ADVAN3 TRANS1’
Two compartment, parameterized as intercompartmental clearance and steady-state volume of distribution 1.0 ‘ADVAN3 TRANS3’
Two compartment, parameterized as intercompartmental clearance and peripheral volume 1.1 ‘ADVAN3 TRANS4’

Effect of weight
on clearance

No effect 0.0 ‘ ‘
Linear effect 0.1 ‘+THETA() * WT’
Power model effect 1.0 ‘*WT**THETA()’
Exponential effect 1.1 ‘*EXP(THETA()*WT) ‘

M. Sale & E. A. Sherer
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• Lack of correlation between covariates that are predictive
of the same parameter

• Clinical significance of covariate effects

Single objective GA

In the simplest implementation of GA, these measures of
model goodness can be combined into a single value for
fitness.The objective function from NONMEM (–2ll) serves as
the basis for the fitness, with user defined penalties added
to this for the other desired qualities of a model. For
example, if the objective of the modelling exercise was
simulation, rather than hypothesis testing, the penalty for
additional estimated parameters (the parsimony penalty)
might be small, perhaps 2 points as used in the Akaike
information criteria [16]. Similarly, if the user is not con-
cerned about having a successful covariance step, the
penalty for this would be set to 0 or, in the other extreme,
if there are scenarios that are not biologically plausible
(e.g. a certain combination of covariates), these can simply
not be included in the search space.

Figure 4 shows the overall process.The algorithm is ini-
tiated by randomly creating an initial population of
models. Typically, many of these initial models will be very
poor, often resulting in numerical problems, and may not
converge successfully. The fitness for each model in the
population of model is calculated.‘Parent’ models can then
be randomly selected with replacement from the popula-
tion, proportional to the model fitness. The random selec-
tion with replacement is essential, as this permits
especially fit (good) models to enter into the next genera-
tion multiple times,and the low fitness models to gradually
be removed from the population. The ‘parent’ models are
then paired off. Crossover between the parents and muta-
tions are then applied, resulting in two new models for the
next generation. In this way, the better models enter into
subsequent generations with a higher frequency, and are
recombined, and mutated to create potentially still better
models.

For a search of model for NONMEM, the single objective
fitness function is defined as:

Fitness ll Convergence Covariance

Corr

= − + + + + +
+

2 N P N P N P P P
P

θ θ ω ω σ σ

eelation Condition NDPE Parameter Signficiance+ + + +P P P P#

where −2ll is the objective function from NONMEM (either
from a single minimization run or cross validation), Nθ is the
number of estimated theta elements, Pθ is the penalty for
each estimated Theta element, Nω is the number of esti-
mated Omega elements, Pω is the penalty for each esti-
mated omega element, Nσ is the number of estimated
sigma elements, Pσ is the penalty for each estimated Sigma
elements, PConvergence is the penalty applied if the model fails

to converge, PCovariance is the penalty applied if the model
fails the covariance step, PCorrelation is the penalty applied
based on the diagonal elements of the correlation matrix,
PCondition# is the penalty applied based on the condition
number, PNDPE is a penalty dependent on the global P value
of NPDE, PParameter is a penalty dependent on the correlation
coefficients of all covariates predicted a given parameter
and PSignificance is a penalty applied for any covariate effects
that fail a test of clinical significance.

All penalties except −2ll are optional and the specific
values of penalties are defined by the user. For example,
PCondition# can be set to 100 if the condition number exceeds
1000; but the penalty and form of the condition number
threshold are adjustable and are set by the user.

Niching
A common characteristic of a simple GA is too rapid con-
vergence.This limits the ability of the GA to explore further
the global search space because of the lack of diversity in
the population of models. This diversity serves as a sub-
strate for recombination. Diversity in the population of
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Figure 4
Simple genetic algorithm. The algorithm is initialized with a random
population. ‘Parents’ for the next generation are selected (with replace-
ment) for the next generation proportional to the user defined ‘fitness’ of
the model.These ‘parent’ models are then paired off and undergo crosso-
ver and mutation to form the next generation of models
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models is maintained by a technique called niching. In
niching a penalty is applied to a group of models that are
similar. A niche is then defined as the subset of the popu-
lation of models that differ at less than a specified number
of bits, called the niche radius.The user selects the number
of niches, typically about four. The niches are determined
by selecting the best model in the population as the first
niche. All models that are within that radius are assigned to
the first niche. Then the next best model that is not
currently in a niche is selected, and all models that are
within the radius are assigned to that niche. The penalty is
applied to all the models in the niche, and the size of the
penalty is determined such that the fitness of the best
model in the niche remains better than the fitness of all
models that are not in the niche. The addition of niche
penalties permits the gradual elimination of the least fit
models, preservation of many moderately fit models and
prevents the best fitting models from rapidly dominating
the population.

Elitism
Because parent models are selected randomly,with a prob-
ability of selection that depends on their fitness, it is pos-
sible that the best model may actually not be chosen as a
parent for the next generation.This is addressed by simply
insuring that the best model will be preserved intact
(without crossover or mutation) into the next generation, a
method known as elitism.

Hybrid GA
GA has been shown to be effective at finding generally
good models. However, finding the last few changes that
result in a truly optimal model can be difficult for GA. This
issue is addressed by using a combination of the GA global
search algorithms and a local search algorithm (see
Figure 5). In this hybrid approach, GA is run for a number of
(e.g. 3–10) generations after which a local search is per-
formed, starting with the best model in each niche. The
local search is similar to the traditional manual model
building.A new population of models is created by system-
atically reversing each bit in the genome of the best model
in each niche. That is, if a genome is 100 bits long, 100
models will be created, each differing from the initial
model at 1 bit. If four niches are used, 400 models will
result, 100 from the best model in each niche. Each model
is run and the fitness is calculated.

If one or two models from the hill climbing step have
a better fitness than the base models, the best model is
substituted for the base model and another step in the
local hill climbing search is performed. If more than two
models are better than the base model, a local exhaustive
search is done. For the local exhaustive search, all bit
changes that result in a better model (up to 6) are exam-
ined in all combinations. If there are 6 bit changes that
result in a better model, 64 (26) models will result. If the
local exhaustive search is performed, the best model from

that search is then used for the next local hill climbing
step. This process is repeated until no further improve-
ment is seen. Once no further improvement is seen, the
best models from the hill climbing/local exhaustive
search are added to the existing population and the
search returns to GA for another iteration of the global
search/local search hybrid approach. In this way, a
number of distinct, but fairly good regions for the search
space are explored in detail every three generations. This
is in contrast to the traditional hill climbing approach,
which starts at a single point that is chosen for conveni-
ence (e.g. one compartment, no covariates), rather than
being an particularly good model. The initiation of the hill
climbing search at multiple, reasonably good points in
the search space greatly improves the likelihood of
finding the global minimum.

Implementation of single objective,
hybrid GA

The model building performance of the single objective
hybrid GA was compared with traditional methods in a
blinded, retrospective crossover study [17]. A summary of
the results is given in Table 2. The primary criterion for
evaluation of the models was the Akaike information cri-
teria (AIC) although neither the traditional model building
nor the GA method specifically targeted AIC. All analyses
were designed to find ‘good’ models by traditional objec-
tive criteria. These results suggest that the hybrid GA algo-
rithm was in all cases at least as effective at finding models
with a lower AIC.

In addition, to the AIC results, the traditional model
building method was not able to find a model that con-
verged in four of the seven analyses without fixing the
absorption rate constant. With the value for absorption
rate fixed to a literature value, two of the analyses did not
result in a successful covariance step. In contrast, the GA
was able to select a model that had a successful conver-
gence and successful covariance step without fixing any
parameters in all cases.

In general, the single objective hybrid GA and tradi-
tional model building approaches found similar models
structures and the GA approach tended to include more
covariates than the traditional approach. The compart-
ment structure was the same for six of seven analyses with
one exception (risperidone) where GA found a two com-
partment model while the traditional approach found a
one compartment model. The AIC for the GA risperidone
model was 278.1 lower (better) than the risperidone model
found by the traditional approach. For covariate inclusion,
the GA approach found a total of 23 covariates among the
seven analyses while the traditional approach found a total
of 13. Seven of these covariates were common to both
approaches.
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Multi-objective GA

In PK/PD model building, some of the desired model char-
acteristics (e.g. parsimony) may conflict with other desir-
able characteristics (e.g. minimized log-likelihood). The
single objective optimization attempts to balance these
individual objectives using penalty functions to weight
individual objectives. A significant disadvantage to this
approach is that the final model selected will depend on the
weighting scheme for which the selection is ad hoc and
subjective. Rather than combining individual objectives
into a single composite objective function, multi-objective
GA (MOGA) compares candidate models by each of the
individual objectives and searches for non-dominated
models [18].

Cross
over/Mutation

Create new
(better)

population
of models

Select parents
proportional to

fitness

Calculate fitness

Add best
models

back to GA
population

Best
model in

each
niche

Repeat until
no further

improvement

Run 3
generations

of GA

Take best model
from exhaustive

search

Do exhaustive search
of up to 6 bit changes

that resulted in a
better model

Select model(s) that
are better than the

base model

Calculate
fitness

Create population by
changing each bit, one
by one, run NONMEM 

Run NONMEM

Figure 5
Hybrid global search algorithm, combining GA, hill climbing and exhaustive search. This allows detailed exploration of a number of local regions in the
search space identified by GA. This addition greatly improves the search algorithm, alternating between an efficient algorithm (hill climbing) and a
completely robust algorithm (exhaustive search)

Table 2
Summary of results from comparison of traditional model selection vs.
single objective hybrid genetic algorithm (SOHGA). A lower value for AIC
suggests a more informative model. In all cases the SOHGA analysis
resulted in a lower AIC than the traditional analysis

Drug
AIC by traditional
method

AIC by
SOHGA

Change in AIC
(SOHGA – traditional)

Citalopram 5391.9 5369.6 −22.3
DMAG 9871.7 9849.4 −22.3

Escitalopram 2737.7 2737.6 −0.1
Olanzapine 10365.8 9895.3 −470.5

Pephenazine 560.7 555.9 −4.8
Risperidone 5131.1 4853.0 −278.1

Ziprasidone 4763.2 4758.7 −4.5
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One model dominates another when it is not worse on
all objectives and better on at least one. For example, for
model A to dominate model B, model A must have a −2ll at
least as low, the same number or fewer parameters, the
same or better quality of the solution etc. and be better on
at least one criteria. For one model to dominate another
means that, by objective criteria, there is no justification for
not preferring that model, it is at least as good in all ways
and better in at least one. Because of the tradeoffs
between criteria, it is unrealistic to search for dominant
models, there will never be a single model that dominates
all models in the search space. For example, a model that
has a −2ll value lower than all the other models will also
not have fewer parameters.

Rather than searching for dominant models, we search
for models that are not dominated, that is, there is no
model that by objective measures is unquestionably
better than this model. There will usually be many such
models. A candidate model in which there is no other can-
didate model that is better or equal in all criteria is called
Pareto optimal and the set of Pareto optimal candidates
comprise the Pareto optimal set. An advantage of the
Pareto optimal set is it allows the user to examine all
models that are, by objective criteria, unsurpassed (i.e.non-
dominated), and to select from among those on subjective
criteria (biological plausibility, diagnostic plots). In PK/PD
model building, objectives that can be used in the multi-
objective optimization include the NONMEM objective func-
tion, number of estimated parameters, convergence,
covariance, and correlation test results and global adjusted
P value from NPDE.

Implementation of multi-objective,
hybrid GA

The multi-objective, hybrid GA has been implemented for
the building the PK model for three different compounds
and the resulting models compared with the single objec-
tive, hybrid GA and traditional methods for three com-
pounds in a retrospective crossover study [19]. As with the
traditional model building approach and the single objec-
tive GA approach, the multi-objective method could vary
the ADVAN/TRANS structure of the model, the inclusion of
inter-occasion variability and block structure, the inclusion
of covariates the functional form and the form of the
residual variability. In the multi-objective GA, candidates
were evaluated along four dimensions: NONMEM objective
function, number of estimated parameters, sum of the con-
vergence, covariance step, and correlation test and global
adjusted P value from NPDE. For all three compounds, the
multi-objective GA found models that passed the conver-
gence, covariance and correlation tests and with equal (1
compound) or lower (2 compounds) NONMEM objective
function values than with the traditional model building
approach. Compared with the single objective, hybrid GA,

the multi-objective hybrid GA Pareto optimal candidate
with the same number of model parameters had similar
NONMEM objective function values (within 5 points) for all
three compounds.

Finding solutions vs. generating
understanding

GAs have been applied to many optimization problems
including protein folding [20, 21], facial recognition,5 gene
expression analysis [22], and integrated circuit design [23].
In pharmacokinetics, GAs are used in complex systems for
parameter estimation when greedy algorithms are not suf-
ficiently robust [24]. However, most of these examples are
simply search algorithms that are not intended to create
understanding. Schmidt & Lipson [25] observed ‘Despite
the prevalence of computing power, the process of finding
natural laws and their corresponding equations has
resisted automation. A key challenge to finding analytic
relations automatically is defining algorithmically what
makes a correlation in observed data important and
insightful’. Schmidt & Lipson went on to describe a para-
digm in which natural laws could be discovered with a
combination of automated search and human insight. The
approach consisted of using multi-objective GA to analyze
the motion of several physical systems including a single
pendulum, double pendulum and spring mounted single
and double masses on an air track. Data were collected on
the motion of these systems. Multi-objective genetic pro-
gramming was then used to assemble equations using
only fundamental mathematical symbols (+, –, *, /, cosine,
sine, exponentiation) without any human intervention and
to find the parameters of these equations. Multi-objective
genetic programming was able to find the correct analytic
solution, as systems of differential equations in all cases. In
the case of the double pendulum (the most complex
system), the algorithm found a Pareto set with 10 models
that best described the data empirically. These 10 models
were then presented to the user to evaluate for theoretical
plausibility. The analytically correct equations were found
among these 10 models. This approach (human selection
and interpretation from among multiple models) has also
proven useful in making predictions for weather [26] and
has been demonstrated by Chaturvedula et al. for popula-
tion pharmacokinetic modelling [27].

Mode of use

It is the exception when data analysis alone is able to gen-
erate insight about natural processes [28]. The traditional
approach to creating understanding is to use theoretical
knowledge to create candidate models and then to

5http://www.evofit.co.uk/, retrieved 29 January 2013.

M. Sale & E. A. Sherer

36 / 79:1 / Br J Clin Pharmacol

http://www.evofit.co.uk/


evaluate and compare how consistent those models are
with data. Despite the findings of Schmidt & Lipson [25] in
a physics experiment, it is unlikely that understanding and
insight can be created from pharmacokinetics data sets
without human intervention.The paradigm of humans cre-
ating hypotheses based on understanding of pharmacol-
ogy, then testing those hypotheses with data does not
change when moving from a local search algorithm to a
global search algorithm.

The incorporation of knowledge of the pharmacology
of a drug into either a local or a global search algorithm
starts with defining the search space. Specifically, if an
effect has no possible basis in biology, it should not be
examined in a traditional local search algorithm or a global
search algorithm. Conversely, if a feature is well established
to have an effect (e.g. creatinine clearance effect on amino
glycoside clearance), potentially that effect need not be
tested at all, but simply included in the model. Later in the
analysis, if inclusion of a candidate feature that is biologi-
cally plausible (e.g. weight as a predictor of volume of dis-
tribution) results in infeasible parameter estimates (e.g. a
negative relationship between weight and volume of dis-
tribution), the causes of such a relationship must be exam-
ined and (probably) the model modified so that the
parameter value is biologically plausible.

In addition to the initial search space definition, there
are opportunities to interact with the global search algo-
rithm. The most obvious is simply if the search is consist-
ently resulting in implausible models, the search should be
stopped, the implausible models examined and modified
appropriately. These modifications can then be incorpo-
rated in a new search space and the search begun again.
Alternatively, if the data clearly show results inconsistent
with the theoretical model, perhaps the theoretical model
should be re-evaluated.

In addition, the traditional model building algorithm
includes a backward elimination step. In this approach, the
statistical threshold for a model feature being accepted is
relatively low (often P < 0.05). The low threshold for inclu-
sion results in a relatively large (many features) model. In
order to correct for multiple comparison, typically, the fea-
tures in this model are individually removed and retested
at a higher threshold (often P < 0.01), an algorithm known
as backward elimination (last step in Figure 1). Global
search is well suited to this approach as first described by
Chaturvedula et al. [27]. This approach might be called
GA/backward elimination (GABE), where the traditional
forward addition model building stage is replaced by the
global search. As in the traditional forward addition/
backward elimination, the threshold for inclusion of an
effect in the model should be relatively low for the GA
model selection. This will result in a larger model, some
features of which may not meet statistical thresholds, be
clinically important or be considered important in the
model for other reasons.These features can be removed in
the backward elimination step of the GABE algorithm, a

process that should include human evaluation for biologi-
cal plausibility.

Practical issues

The most important practical issue with any automated
algorithm is the temptation to accept the results blindly.
Global search methods do not substitute for the thought-
ful examination of the data, and the incorporation of
pharmacologic understanding into model selection. They
simply automate the actual search part, not the intellectual
part. The available software for global search in
pharmacokinetics makes available the results with basic
diagnostics for all models that are run presented in a large
spreadsheet. Any of these models can be examined, modi-
fied and rerun prior to selecting the ‘final’ model.

Related to the temptation to accept blindly the algo-
rithm results is the range of modelling exercises that can
be addressed by automated methods. Automated global
search algorithms are best suited when most hypotheses
can be stated initially. However, every automated analysis
should include examination of the results for sources of
bias, and consideration of how to expand the search space
to include any new hypotheses from that examination.
Sometimes, hypothesis creation (especially in the case of
pharmacodynamic models) is nearly iterative. A model is
constructed and run. Once the model is run, diagnostics
demonstrate sources of bias. Biologically sound hypoth-
eses to explain these biases are generated and a new
model is created and run, at which time diagnostics are
used to generate new hypotheses. It would be difficult to
use automated search algorithms in these cases, since rela-
tively few hypotheses are available at the outset with
which to construct a search space.

The second issue with global search algorithms is the
high computational load.This should be examined in com-
parison with the high modeler effort required to actually
type, run and examine the output from the models. Two
thousand hours of computer time is much less expensive
than 200 hours of modeller effort. The current price for
Linux CPU time on Amazon compute cloud is $0.06 h−1.6

It should be noted that methods exist to automated
stepwise modeling for covariates (SCM in Perl speaks
NONMEM7).

Another significant issue with global search algorithms
is the likelihood that examining thousands of models
increases the risk of an inflated alpha error. It remains
unclear how much of an issue this is, but initial results
suggest that this ‘over modelling’ problem can be
managed with appropriate parsimony penalties, and pen-
alties for clinical significance and correlated covariates on a
single parameter [29]. Cross validation is another approach

6http://physicsworld.com/cws/article/news/2009/apr/02/algorithm-
discovers-physical-laws, retrieved 29 January 2013.
7http://aws.amazon.com/ec2/pricing/, retrieved 29 January 2013.
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to managing inflated alpha error rates [13, 30] that seems
especially promising and is available in the current GA
application.

The application of a population PK/PD model to the
drug development process has been limited by the time
and expense of the analyses. Automated global search
methods promise to decrease both dramatically, making it
realistic to have population pharmacokinetic models avail-
able for decision making while the decisions are still being
made. A typical automated analysis includes about 12 000
unique models, many more than a traditional analysis. If
the run time for a model is 10 to 20 min, and 48 cores are
available (eight six core machines), this suggests time for
the analysis of 2 to 4 days, rather than the traditional
several weeks. Other computational models where hun-
dreds of CPUs were readily available (e.g.cloud computing)
could reduce this even further.

Conclusions

The approach to model selection in population PK/PD has
changed little in the past 30 years.This approach arose out
of a combination of statistical theory (forward addition/
backward elimination in linear regression) and practical
considerations (that the inclusion of random effects dra-
matically increased run time and cost). Of these two
sources of the algorithm, the basis in forward addition/
backward elimination is limited by the failure of the
assumption of convexity, and the run time issue with vari-
ance terms has yielded to a dramatic increase in computer
speed in the last 30 years. Global search algorithms not
only have proven to be more robust, but, in some cases,
when combined with human input to be capable of uncov-
ering basic principles of nature [25].8
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