1,716 research outputs found

    Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus

    Get PDF
    Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naΓ―ve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. Β© 2010 Bhardwaj et al

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context

    Surgical treatment of uterine prolapse in women with bladder exstrophy: report of two cases with modified Proliftβ„’ procedure

    Get PDF
    The incidence of pelvic organ prolapse is 18% in women with bladder exstrophy. A vaginal technique to correct the prolapse may be preferable in these women with multiple abdominal operations in their histories. We have performed a modified Proliftβ„’ procedure for the repair of severe uterine prolapse in two young women. A review of the literature is presented

    The conceptualisation and measurement of DSM-5 Internet Gaming Disorder: the development of the IGD-20 Test

    Get PDF
    Background: Over the last decade, there has been growing concern about β€˜gaming addiction’ and its widely documented detrimental impacts on a minority of individuals that play excessively. The latest (fifth) edition of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5) included nine criteria for the potential diagnosis of Internet Gaming Disorder (IGD) and noted that it was a condition that warranted further empirical study. Aim: The main aim of this study was to develop a valid and reliable standardised psychometrically robust tool in addition to providing empirically supported cut-off points. Methods: A sample of 1003 gamers (85.2% males; mean age 26 years) from 57 different countries were recruited via online gaming forums. Validity was assessed by confirmatory factor analysis (CFA), criterion-related validity, and concurrent validity. Latent profile analysis was also carried to distinguish disordered gamers from non-disordered gamers. Sensitivity and specificity analyses were performed to determine an empirical cut-off for the test. Results: The CFA confirmed the viability of IGD-20 Test with a six-factor structure (salience, mood modification, tolerance, withdrawal, conflict and relapse) for the assessment of IGD according to the nine criteria from DSM-5. The IGD-20 Test proved to be valid and reliable. According to the latent profile analysis, 5.3% of the total participants were classed as disordered gamers. Additionally, an optimal empirical cut-off of 71 points (out of 100) seemed to be adequate according to the sensitivity and specificity analyses carried

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    Get PDF
    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development

    Device-related infection in de novo transvenous implantable cardioverter-defibrillator Medicare patients

    Get PDF
    BACKGROUND: Cardiac device infection is a serious complication of implantable cardioverter-defibrillator (ICD) placement and requires complete device removal with accompanying antimicrobial therapy for durable cure. Recent guidelines have highlighted the need to better identify patients at high risk of infection to assist in device selection. OBJECTIVE: To estimate the prevalence of infection in de novo transvenous (TV) ICD implants and assess factors associated with infection risk in a Medicare population. METHODS: A retrospective cohort study was conducted using 100% Medicare administrative and claims data to identify patients who underwent de novo TV-ICD implantation (7/2016-12/2017). Infection within 720 days of implantation was identified using ICD-10 codes. Baseline factors associated with infection were identified by univariable logistic regression analysis of all variables of interest, including conditions in Charlson and Elixhauser comorbidity indices, followed by stepwise selection criteria with a p≀0.25 for inclusion in a multivariable model and a backwards, stepwise elimination process with p≀0.1 to remain in the model. A time-to-event analysis was also conducted. RESULTS: Among 26,742 patients with de novo TV-ICD, 519 (1.9%) developed an infection within 720 days post-implant. While more than half (54%) of infections occurred during the first 90 days, 16% of infections occurred after 365 days. Multivariable analysis revealed several significant predictors of infection: age <70 years, renal disease with dialysis, and complicated diabetes mellitus. CONCLUSION: The rate of de novo TV-ICD infection was 1.9% and identified risk factors associated with infection may be useful in device selection

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions

    Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics

    Get PDF
    Brine fluids that upwell from deep, hot reservoirs below the sea bed supply the sea floor with energy-rich substrates and nutrients that are used by diverse microbial ecosystems. Contemporary hypersaline environments formed by brine seeps may provide insights into the metabolism and distribution of microorganisms on the early Earth or on extraterrestrial bodies. Here we use geochemical and genetic analyses to characterize microbial community composition and metabolism in two seafloor brines in the Gulf of Mexico: an active mud volcano and a quiescent brine pool. Both brine environments are anoxic and hypersaline. However, rates of sulphate reduction and acetate production are much higher in the brine pool, whereas the mud volcano supports much higher rates of methane production. We find no evidence of anaerobic oxidation of methane, despite high methane fluxes at both sites. We conclude that the contrasting microbial community compositions and metabolisms are linked to differences in dissolved-organic-matter input from the deep subsurface and different fluid advection rates between the two sites. DOI: 10.1038/NGEO47
    • …
    corecore