177 research outputs found

    Quantum information processing by NMR using a 5-qubit system formed by dipolar coupled spins in an oriented molecule

    Full text link
    Quantum Information processing by NMR with small number of qubits is well established. Scaling to higher number of qubits is hindered by two major requirements (i) mutual coupling among qubits and (ii) qubit addressability. It has been demonstrated that mutual coupling can be increased by using residual dipolar couplings among spins by orienting the spin system in a liquid crystalline matrix. In such a case, the heteronuclear spins are weakly coupled but the homonuclear spins become strongly coupled. In such circumstances, the strongly coupled spins can no longer be treated as qubits. However, it has been demonstrated elsewhere, that the 2N2^N energy levels of a strongly coupled N spin-1/2 system can be treated as an N-qubit system. For this purpose the various transitions have to be identified to well defined energy levels. This paper consists of two parts. In the first part, the energy level diagram of a heteronuclear 5-spin system is obtained by using a newly developed heteronuclear z-cosy (HET-Z-COSY) experiment. In the second part, implementation of logic gates, preparation of pseudopure states, creation of entanglement and entanglement transfer is demonstrated, validating the use of such systems for quantum information processing.Comment: 23 pages, 8 figure

    Editing through multiple bonds: Threonine detection

    Get PDF
    In in vivo H-1 spectroscopy, the signal at 1.32 ppm is usually assigned to lactate. This resonance position is shared with threonine at physiological pH. The similarity of spectral patterns of lactate and threonine renders the separate measurement of either threonine or lactate without and even with editing technically challenging. In this study, the threonine signal was detected using a single-shot multiple-bond editing technique and quantified in vivo in both rat and human brains. A threonine concentration was estimated at 0.8 +/- 0.3 mM (mean +/- SD, n = 6) in the rat brain and at similar to 0.33 mM in the human brain

    Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems

    Get PDF
    Proton-observed carbon-edited (POCE) NMR spectroscopy is commonly used to measure 13C labeling with higher sensitivity compared to direct 13C NMR spectroscopy, at the expense of spectral resolution. For weakly coupled first-order spin systems, the multiplet signal at a specific proton chemical shift in POCE spectra directly reflects 13C enrichment of the carbon attached to this proton. The present study demonstrates that this is not necessarily the case for strongly coupled second-order spin systems. In such cases NMR signals can be detected in the POCE spectra even at chemical shifts corresponding to protons bound to 12C. This effect is demonstrated theoretically with density matrix calculations and simulations, and experimentally with measured POCE spectra of [3-13C] glutamate. © 2003 Wiley-Liss, Inc

    Direct Arterial Injection of Hyperpolarized 13C-Labeled Substrates into Rat Tumors for Rapid MR Detection of Metabolism with Minimal Substrate Dilution

    Get PDF
    Purpose: A rat model was developed to enable direct administration of hyperpolarized 13C-labeled molecules into a tumorsupplying artery for magnetic resonance spectroscopy (MRS) studies of tumor metabolism. Methods: Rat P22 sarcomas were implanted into the right inguinal fat pad of BDIX rats such that the developing tumors received their principle blood supply directly from the right superior epigastric artery. Hyperpolarized 13C-molecules were either infused directly to the tumor through the epigastric artery or systemically through the contralateral femoral vein. Spectroscopic data were obtained on a 7 Tesla preclinical scanner. Results: Intra-arterial infusion of hyperpolarized 13C-pyruvate increased the pyruvate tumor signal by a factor of 4.6, compared with intravenous infusion, despite an approximately 7 times smaller total dose to the rat. Hyperpolarized glucose signal was detected at near-physiological systemic blood concentration. Pyruvate to lactate but not glucose to lactate metabolism was detected in the tumor. Hyperpolarized 13Clabeled combretastatin A1 diphosphate, a tumor vascular disrupting agent, showed an in vivo signal in the tumor. Conclusions: The model maximizes tumor substrate/drug delivery and minimizes T1 relaxation signal losses in addition to systemic toxicity. Therefore, it permits metabolic studies of hyperpolarized substrates with relatively short T1 and opens up the possibility for preclinical studies of hyperpolarized drug molecules

    Entanglement in nuclear quadrupole resonance

    Full text link
    Entangled quantum states are an important element of quantum information techniques. We determine the requirements for states of quadrupolar nuclei with spins >1/2 to be entangled. It was shown that entanglement is achieved at low temperature by applying a magnetic field to a quadrupolar nuclei possess quadrupole moments, which interacts with the electricfield gradient produced by the charge distribution in their surroundings.Comment: 9 pages, 5 figure

    Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate

    Get PDF
    Purpose: Measurements of objective response rates are critical to evaluate new glioma therapies. The hallmark metabolic alteration in gliomas with mutant isocitrate dehydrogenase (IDH) is the overproduction of oncometabolite 2-hydroxyglutarate (2HG), which plays a key role in malignant transformation. 2HG represents an ideal biomarker to probe treatment response in IDH-mutant glioma patients, and we hypothesized a decrease in 2HG levels would be measureable by in vivo magnetic resonance spectroscopy (MRS) as a result of antitumor therapy. Experimental Design: We report a prospective longitudinal imaging study performed in 25 IDH-mutant glioma patients receiving adjuvant radiation and chemotherapy. A newly developed 3D MRS imaging was used to noninvasively image 2HG. Paired Student t test was used to compare pre- and posttreatment tumor 2HG values. Test-retest measurements were performed to determine the threshold for 2HG functional spectroscopic maps (fSM). Univariate and multivariate regression were performed to correlate 2HG changes with Karnofsky performance score (KPS). Results: We found that mean 2HG (2HG/Cre) levels decreased significantly (median=48.1%; 95% confidence interval=27.3%-56.5%; P=0.007) in the posttreatment scan. The volume of decreased 2HG correlates (R2=0.88, P=0.002) with clinical status evaluated by KPS. Conclusions: We demonstrate that dynamic measurements of 2HG are feasible by 3D fSM, and the decrease of 2HG levels can monitor treatment response in patients with IDH-mutant gliomas. Our results indicate that quantitative in vivo 2HG imaging maybe used for precision medicine and early response assessment in clinical trials of therapies targeting IDH-mutant gliomas

    Entanglement generation by adiabatic navigation in the space of symmetric multi-particle states

    Full text link
    We propose a technique for robust and efficient navigation in the Hilbert space of entangled symmetric states of a multiparticle system with externally controllable linear and nonlinear collective interactions. A linearly changing external field applied along the quantization axis creates a network of well separated level crossings in the energy diagram of the collective states. One or more transverse pulsed fields applied at the times of specific level crossings induce adiabatic passage between these states. By choosing the timing of the pulsed field appropriately, one can transfer an initial product state of all N spins into (i) any symmetric state with n spin excitations and (ii) the N-particle analog of the Greenberger-Horne-Zeilinger state. This technique, unlike techniques using pulses of specific area, does not require precise knowledge of the number of particles and is robust against variations in the interaction parameters. We discuss potential applications in two-component Bose condensates and ion-trap systems.Comment: 7 pages, 6 figure

    Uncovering hidden in vivo resonances using editing based on localized TOCSY

    Get PDF
    A novel single-shot spectral editing technique for in vivo proton NMR is proposed to recover resonances of low-concentration metabolites obscured by very strong resonances. With this new method, editing is performed by transferring transverse magnetization to J-coupled spins from selected coupling partners using a homonuclear Hartmann-Hahn polarization transfer with adiabatic pulses. The current implementation uses 1D-TOCSY with single-voxel localization based on LASER to recover the H1 proton of beta-glucose at 4.63 ppm from under water and the lactate methyl resonances from beneath a strong lipid signal. The method can be extended to further spin systems where conventional editing methods are difficult to perform
    corecore