38 research outputs found

    The comparison of effectiveness, safety, and clinical outcome of one steppercutaneous abscess aspiration versus drainage by insertion of a drainage catheter in children with post-appendectomy abscess

    Get PDF
    Introduction: Although radiologic guided abscess drainage with a drainage catheter has been a successful method for treatment of appendicular abscess after surgery, single stage aspiration technique could also be used as a good option in children with intra-abdominal abscess. The aim of this study was to compare efficacy, safety and clinical outcome of percutaneous abscess drainage versus aspiration in pediatric patients with post-appendectomy abscess formation.Materials and Methods: This randomized control trial was conducted under the supervision of Mashhad University of medical sciences. Children were enrolled in the study with suspicion of post-appendectomy abscess formation. Patients were divided into two groups (drainage or aspiration) with simple sampling method. Demographic characteristics and clinical outcome were compared between the two groups. Data analysis was done using SPSS version 16.Results: Fifty children with post-appendectomy abscess were enrolled in this study. Their mean age was 10.4 ± 4.1 year (range from 5 to 19yrs). Drainage was successful in 88% of patients and the succeed rate in aspiration group was 96% and this difference was not significant statistically (p=0.609). Duration of hospital stay was longer in the drainage group in comparison with aspiration (2.8 ± 0.55 vs. 2.1 ± 0.47, p-value < 0.001).Conclusion: Efficacy, safety and other clinical outcomes of percutaneous abscess drainage and aspiration were the same in pediatric patients with smaller than 5 cm post-appendectomy abscess. Due to lower cost and parental satisfaction, aspiration would be a good choice in children with small post-appendectomy abscess

    Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone

    Get PDF
    The aim of this study was to determine adsorption properties of cuttlebone, cuttlefish bone as dead biomass, for lead(II) and copper(II) from aqueous solutions. Adsorption kinetic, isotherm and effect of pH (in the range of 2.0–7.0) were investigated in a single component batch system at room temperature (25±1 WC). The heavy metal adsorption by cuttlebone was relatively rapid and reached to equilibrium in 120 min in all the cases. The pseudo-second order rate equation described the adsorption kinetic of both the ions. The adsorption capacities of Pb2þ and Cu2þ were constantly increased by pH and the optimum condition of pH was determined to be 7.0. The Freundlich model was better fitted than other models with the isotherm data indicating sorption of the metal ions in a heterogeneous surface. According to the Langmuir model, the maximum adsorption capacities (qm) of cuttlebone for Pb2þ and Cu2þ were determined to be 45.9 and 39.9 mg/g, respectively. The results indicated cuttlebone as a promising adsorbent for Pb2þ and Cu2þ that presents a high capacity of self-purification in marine environments as well as can be used for removal of the metal ions from water and wastewater

    National Minimum Data Set for Antimicrobial Resistance Management: Toward Global Surveillance System

    Get PDF
    Background: Success of infection treatment depends on the availability of accurate, reliable, and comprehensive data, information, and knowledge at the point of therapeutic decision-making. The identification of a national minimum data set will support the development and implementation of an effective surveillance system. The goal of this study was to develop a national antimicrobial resistance surveillance minimum data set. Methods: In this cross-sectional and descriptive study, data were collected from selected pioneering countries and organizations which have national or international antimicrobial resistance surveillance systems. A minimum data set checklist was extracted and validated. The ultimate data elements of the minimum data set were determined by applying the Delphi technique. Results: Through the Delphi technique, we obtained 80 data elements in 8 axes. The resistance data categories comprised basic, clinical, electronic reporting, infection control, microbiology, pharmacy, World Health Organization-derived, and expert-recommended data. Relevance coding was extracted based on the Iranian electronic health record coding system. Conclusion: This study provides a set of data elements and a schematic framework for the implementation of an antimicrobial resistance surveillance system. A uniform minimum data set was created based on key informants’ opinions to cover essential needs in the early implementation of a global antimicrobial resistance surveillance system in Iran

    Impact of Metformin on Cancer Biomarkers in Non-Diabetic Cancer Patients: A Systematic Review and Meta-Analysis of Clinical Trials

    Get PDF
    Introduction: Our aim was to investigate and evaluate the influence of metformin on cancer-related biomarkers in clinical trials. Methods: This systematic study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Major databases, including Scopus, Web of Sciences, PubMed, Ovid-Medline, and Cochrane, were systematically reviewed by February 2020. Clinical trials investigating metformin effects on the evaluation of homeostatic models of insulin resistance (HOMA-IR), Ki-67, body mass index (BMI), fasting blood sugar (FBS), and insulin were selected for further analysis. Quality assessment was performed with version 2 of the Cochrane tool for determining the bias risk for randomized trials (RoB 2). Heterogeneity among the included studies was assessed using the Chi-square test. After quality assessment, a random effects model was performed to summarize the data related to insulin, HOMA-IR, Ki-67, and a fixed-effect model for FBS and BMI in a meta-analysis. Results: Nine clinical trials with 716 patients with operable breast and endometrial cancer and 331 with primary breast cancer were involved in the current systematic and meta-analysis study. Systematic findings on the nine publications indicated metformin decreased insulin levels in four studies, FBS in one, BMI in two, Ki-67 in three studies, and HOMA-IR in two study. The pooled analysis indicated that metformin had no significant effect on the following values: insulin (standardized mean differences (SMD) = −0.87, 95% confidence intervals (CI) (−1.93, 0.19), p = 0.11), FBS (SMD = −0.18, 95% CI (−0.30, −0.05), p = 0.004), HOMA-IR (SMD = −0.17, 95% CI (−0.52, 0.19), p = 0.36), and BMI (SMD = −0.13, 95% CI (−0.28, 0.02), p = 0.09). Metformin could decrease Ki-67 in patients with operable endometrial cancer versus healthy subjects (SMD = 0.47, 95% CI (−1.82, 2.75), p = 30.1). According to Egger’s test, no publication bias was observed for insulin, FBS, BMI, HOMA-IR, and Ki-67. Conclusions: Patients with operable breast and endometrial cancer under metformin therapy showed no significant changes in the investigated metabolic biomarkers in the most of included study. It was also found that metformin could decrease Ki-67 in patients with operable endometrial cancer. In comparison to the results obtained of our meta-analysis, due to the high heterogeneity and bias of the included clinical trials, the present findings could not confirm or reject the efficacy of metformin for patients with breast cancer and endometrial cancer

    The p.Arg435His Variation of IgG3 With High Affinity to FcRn Is Associated With Susceptibility for Pemphigus Vulgaris—Analysis of Four Different Ethnic Cohorts

    Get PDF
    IgG3 is the IgG subclass with the strongest effector functions among all four IgG subclasses and the highest degree of allelic variability among all constant immunoglobulin genes. Due to its genetic position, IgG3 is often the first isotype an antibody switches to before IgG1 or IgG4. Compared with the other IgG subclasses, it has a reduced half-life which is probably connected to a decreased affinity to the neonatal Fc receptor (FcRn). However, a few allelic variants harbor an amino acid replacement of His435 to Arg that reverts the half-life of the resulting IgG3 to the same level as the other IgG subclasses. Because of its functional impact, we hypothesized that the p.Arg435His variation could be associated with susceptibility to autoantibody-mediated diseases like pemphigus vulgaris (PV) and bullous pemphigoid (BP). Using a set of samples from German, Turkish, Egyptian, and Iranian patients and controls, we were able to demonstrate a genetic association of the p.Arg435His variation with PV risk, but not with BP risk. Our results suggest a hitherto unknown role for the function of IgG3 in the pathogenesis of PV

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore