301 research outputs found

    GPM-DPR Observations on TGFs Producing Storms

    Get PDF
    Unique spaceborne measurements of the three-dimensional structure of convective clouds producing terrestrial gamma ray flashes (TGFs) were performed using both active and passive microwave sensors on board the Global Precipitation Measurement (GPM)-Core Observatory satellite, finding coherent features for nine TGF-producing storms. The delineation of cloud structure using the radar reflectivity factor shows convective cells with significant vertical development and thick layers with high ice content. Compared to other cumulonimbus clouds in the tropics, the TGFs counterparts have higher reflectivity values above 3 and 8 km altitude showing in all cases a cumulonimbus tower and the TGFs locations are very close, or coincident, to these high Z columns, where reflectivity exceeds 50dBz. Using the GPM Microwave Imager radiometer, most thunderstorms show a very strong depression of polarization corrected temperature (PCT) at channel 89GHz, indicating a strong scattering signal by ice in the upper cloud layers. At channel 166GHZ, the difference between vertical and horizontal brightness temperature signal always returns positive values, from 0.2 up to 13.7K indicating a complex structure with randomly/vertically oriented ice particles. The PCT was used to characterize the analyzed storms in terms of hydrometeor types, confirming in 7/9 cases a high likelihood of hail/graupel presence. To perform analysis on the TGFs parent flashes, radio atmospherics data from the Earth Networks Total Lightning Network lightning network were used. Waveform data indicate that all cases are intra-cloud events and TGFs typically take place during the peak of flash rate production. Finally, the analysis of the most intense event is shown

    Decreasing pH impairs sexual reproduction in a Mediterranean coral transplanted at a CO2 vent

    Get PDF
    Ocean acidification, due to the increase of carbon dioxide (CO2) concentration in the atmosphere and its absorption by the oceans, affects many aspects of marine calcifying organisms' biology, including reproduction. Most of the available studies on low pH effects on coral reproduction have been conducted on tropical species under controlled conditions, while little information is reported for either tropical or temperate species in the field. This study describes the influence of decreasing pH on sexual reproduction of the temperate non-zooxanthellate colonial scleractinian Astroides calycularis, transplanted in four sites along a natural pH gradient at the underwater volcanic crater of Panarea Island (Tyrrhenian Sea, Italy). The average pH values of each site (range: pHTS 8.07–7.40) match different scenarios of the Intergovernmental Panel on Climate Change (IPCC) for the end of the century. After 3 months under experimental conditions, the reproductive parameters of both oocytes and spermaries (abundance, gonadal index, and diameters) seem to be unaffected by low pH. However, a delay in spermary development in the pre-fertilization period and a persistence of mature oocytes in the fertilization period were observed in the most acidic site. Furthermore, no embryos were found in colonies from the two most acidic sites, suggesting a delay or an interruption of the fertilization process due to acidified conditions. These findings suggest a negative effect of low pH on A. calycularis sexual reproduction. However, long-term experiments, including the synergistic impact of pH and temperature, are needed to predict if this species will be able to adapt to climate change over the next century

    The X-Gamma Imaging Spectrometer (XGIS) onboard THESEUS

    Get PDF
    A compact and modular X and gamma-ray imaging spectrometer (XGIS) has been designed as one of the instruments foreseen on-board the THESEUS mission proposed in response to the ESA M5 call. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm 2 Silicon Drift Detectors. Events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and Gamma-rays) are discriminated using the on-board electronics. A coded mask provides imaging capabilities at low energies, thus allowing a compact and sensitive instrument in a wide energy band (~2 keV up to ~20 MeV). The instrument design, expected performance and the characterization performed on a series of laboratory prototypes are discussed.Comment: To be published in the Proceedings of the THESEUS Workshop 2017 (http://www.isdc.unige.ch/theseus/workshop2017.html), Journal of the Italian Astronomical Society (Mem.SAIt), Editors L. Amati, E. Bozzo, M. Della Valle, D. Gotz, P. O'Brien. Details on the THESEUS mission concept can be found in the white paper Amati et al. 2017 (arXiv:171004638) and Stratta et al. 2017 (arXiv:1712.08153

    LOFT - a Large Observatory For x-ray Timing

    Get PDF
    The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to meet the scientific requirements. We are developing large-area monolithic Silicon Drift Detectors offering high time and energy resolution at room temperature, which require modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics that we measured in the lab, we developed a realistic concept for a very large effective area mission devoted to X-ray timing in the 2-30 keV energy range. We show that effective areas in the range of 10-15 square meters are within reach, by using a conventional spacecraft platform and launcher of the small-medium class.Comment: 13 pages, 8 figures, 1 table, Proceedings of SPIE Vol. 7732, Paper No. 7732-66, 201

    AGILE detection of delayed gamma-ray emission from GRB 080514B

    Get PDF
    GRB 080514B is the first gamma ray burst (GRB), since the time of EGRET, for which individual photons of energy above several tens of MeV have been detected with a pair-conversion tracker telescope. This burst was discovered with the Italian AGILE gamma-ray satellite. The GRB was localized with a cooperation by AGILE and the interplanetary network (IPN). The gamma-ray imager (GRID) estimate of the position, obtained before the SuperAGILE-IPN localization, is found to be consistent with the burst position. The hard X-ray emission observed by SuperAGILE lasted about 7 s, while there is evidence that the emission above 30 MeV extends for a longer duration (at least ~13 s). Similar behavior was seen in the past from a few other GRBs observed with EGRET. However, the latter measurements were affected, during the brightest phases, by instrumental dead time effects, resulting in only lower limits to the burst intensity. Thanks to the small dead time of the AGILE/GRID we could assess that in the case of GRB 080514B the gamma-ray to X-ray flux ratio changes significantly between the prompt and extended emission phase.Comment: A&A letters, in pres

    Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    Get PDF
    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.Comment: 22 pages, 14 figures, published and open access on JINS

    New WMO certified megaflash lightning extremes for flash distance (768 km) and duration (17.01 seconds) recorded from space

    Get PDF
    Initial global extremes in lightning duration and horizontal distance were established in 2017 (Lang et al. 2017) by an international panel of atmospheric lightning scientists and engineers assembled by the WMO. The subsequent launch of NOAA’s latest GOES-16/17 satellites with their Geostationary Lightning Mappers (GLMs) enabled extreme lightning to be monitored continuously over the western hemisphere up to 55° latitude for the first time. As a result, the former lightning extremes were more than doubled in 2019 to 709 km for distance and 16.730 s for duration (Peterson et al. 2020). Continued detection and analysis of lightning “megaflashes” (Sequin, 2021) has now revealed two flashes that even exceed those 2019 records. As part of the ongoing work of the WMO in detection and documentation of global weather extremes (e.g., El Fadli et al. 2013; Merlone et al. 2010), an international WMO evaluation committee was created to critically adjudicate these two GLM megaflash cases as new records for extreme lightning.We thank S. A. Rutledge and two other reviewers for their valuable comments. M. J. Peterson was supported by the U.S. Department of Energy through the Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) program under project number 20200529ECR. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract 89233218CNA000001). T. Logan supported by a NOAA Grant NA16OAR4320115 “Lightning Mapper Array Operation in Oklahoma and the Texas Gulf Coast Region to Aid Preparation for the GOES-R GLM.” I. Kolmasova was supported by GACR Grant 20-09671. S. D. Zhang was supported by a NOAA Grant NNH19ZDA001N-ESROGSS. The participation of J. Montanya in this work is supported by research Grant ESP2017-86263-C4-2-R funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe,” by the “European Union”; and Grants PID2019-109269RB-C42 funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (author's final draft

    AGILE Observations of the Gravitational Wave Event GW150914

    Get PDF
    We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky more than 100 times a day. It turns out that AGILE came within a minute from the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed about 65 % of this region during the 100 s time intervals centered at -100 s and +300 s from the event time. We determine a 2-sigma flux upper limit in the band 50 MeV - 10 GeV, UL=1.9×108ergcm2s1UL = 1.9 \times 10^{-8} \rm \, erg \, cm^{-2} \, s^{-1} obtained about 300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval -150 / -30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi-GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of gravitational wave sources are decidedly promising.Comment: 20 pages, 6 figures. Submitted to the Astrophysical Journal Letters on April 1, 201

    The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Full text link
    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4' and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the Astrophysical Journal Supplement Series following refereeing. Figures of the localizations in Table 3 may be found on the IPN website, at ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and day of the burst, sometimes with suffixes A or
    corecore