25 research outputs found

    Water-content related alterations in macro and micro scale tendon biomechanics

    Get PDF
    Though it is known that the water content of biological soft tissues alters mechanical properties, little attempt has been made to adjust the tissue water content prior to biomechanical testing as part of standardization procedures. The objective of this study was to examine the effects of altered water content on the macro and micro scale mechanical tissues properties. Human iliotibial band samples were obtained during autopsies to osmotically adapt their water content. Macro mechanical tensile testing of the samples was conducted with digital image correlation, and micro mechanical tests using atomic force microscopy. Analyses were conducted for elastic moduli, tensile strength, and strain at maximum force, and correlations for water content, anthropometric data, and post-mortem interval. Different mechanical properties exist at different water concentrations. Correlations to anthropometric data are more likely to be found at water concentrations close to the native state. These data underline the need for adapting the water content of soft tissues for macro and micro biomechanical experiments to optimize their validity. The osmotic stress protocol provides a feasible and reliable standardization approach to adjust for water content-related differences induced by age at death, post-mortem interval and tissue processing time with known impact on the stress-strain properties

    The Effect of the Supplementation of a Diet Low in Calcium and Phosphorus with Either Sheep Milk or Cow Milk on the Physical and Mechanical Characteristics of Bone using A Rat Model

    Get PDF
    This study assessed the effect of cow milk (CM) and sheep milk (SM) consumption on the micro-structure, mechanical function, and mineral composition of rat femora in a male weanling rat model. Male weanling rats were fed a basal diet with a 50% reduction in calcium and phosphorus content (low Ca/P-diet) supplemented with either SM or CM. Rats were fed for 28 days, after which the femora were harvested and stored. The femora were analyzed by ÎŒ-CT, three-point bending, and inductively coupled plasma–mass spectrometry (ICP-MS). The addition of either milk to the low Ca/P-diet significantly increased (p < 0.05) trabecular bone volume, trabecular bone surface density, trabecular number, cortical bone volume, and maximum force, when compared to rats that consumed only the low Ca/P-diet. The consumption of either milk resulted in a significant decrease (p < 0.05) in trabecular pattern factor, and cortical bone surface to volume ratio when compared to rats that consumed only the low Ca/P-diet. The results were achieved with a lower consumption of SM compared to that of CM (p < 0.05). This work indicates that SM and CM can help overcome the effects on bone of a restriction in calcium and phosphorus intake

    Molecular understanding of the suppression of new-particle formation by isoprene

    Get PDF
    Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms - which drive particle nucleation and early growth - while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C-20 and C-15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2 center dot) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene = monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C-15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH center dot) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2 center dot radicals that reduce C-20 formation. RO2 center dot termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C-20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.Peer reviewe

    Fatigue Testing of Human Flexor Tendons Using a Customized 3D-Printed Clamping System

    No full text
    Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and &gt;260,000. S&ndash;N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S&ndash;N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology

    On the influence of surface coating on tissue biomechanics – effects on rat bones under routine conditions with implications for image-based deformation detection

    No full text
    Abstract Background Biomechanical testing using image-based deformation detection techniques such as digital image correlation (DIC) offer optical contactless methods for strain and displacement measurements of biological tissues. However, given the need of most samples to be speckled for image correlation using sprays, chemical alterations with impact on tissue mechanicals may result. The aim of this study was to assess the impact of such surface coating on the mechanical properties of rat bones, under routine laboratory conditions including multiple freeze-thaw cycles. Methods Two groups of rat bones, highly-uniform and mixed-effects, were assigned to six subgroups consisting of three types of surface coating (uncoated, commercially-available water- and solvent-based sprays) and two types of bone conditions (periosteum attached and removed). The mixed-effects group had undergone an additional freeze-thaw cycle at − 20 degrees. All bones underwent a three-point bending test ranging until material failure. Results Coating resulted in similar and non-significantly different mechanical properties of rat bones, indicated by elastic moduli, maximum force and bending stress. Scanning electron microscopy showed more pronounced mechanical alterations related to the additional freeze-thaw cycle, with fewer cracks being present in a bone from the highly-uniform group. Conclusions This study has concluded that surface coating with water- or solvent-based sprays for enhancing image correlation for DIC and having an additional freeze-thaw cycle do not significantly alter mechanical properties of rat bones. Therefore, this method may be recommended as an effective way of obtaining a speckled pattern

    Thermal Spray Coatings as an Adhesion Promoter in Metal/FRP Joints

    No full text
    In this study, various structuring methods for creating adhesion by mechanical interlocking in the interface of metal/FRP (fiber-reinforced polymer) joints are investigated. A novel processing route using thermal spray coatings as additive structure is presented. Different coating systems are first assessed by axial loading tests with spray-coated plungers for the evaluation of the additive layer adhesion on the metallic base material. Additional microstructures, produced by different abrasive processes (corundum blasting, laser structuring, and fine milling) are compared with the additive structures. All surface structures are characterized by electron microscopy for two sheet materials: DC06 and AA6016-T4. The abrasive structures show a significant material dependence, while the selected coating system offers the adjustment to different base materials by an independent surface layer. The structured metal sheets were further joined to glass-fiber-reinforced polyamide 6 (PA6) by hot pressing to evaluate the interface properties in tensile shear tests. The results confirm a suitability of thermal spray coatings for providing a high bonding strength in metal/FRP joints for both investigated metallic substrate materials

    Fatigue Testing of Human Flexor Tendons Using a Customized 3D-Printed Clamping System

    Get PDF
    Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3Dprinted clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R 2 = 0.65, while the individual coefficients for tissues of single donors ranged between R 2 = 0.54 and R 2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technolog

    Influence of Pre-Aging on the Artificial Aging Behavior of a 6056 Aluminum Alloy after Conventional Extrusion

    No full text
    In the present study, the influence of the initial heat-treatment conditions on the artificial aging behavior after conventional linear extrusion at room temperature was investigated for the precipitation hardening of a 6056 aluminum alloy. A solution-annealed condition was systematically compared to naturally-aged and pre-aged conditions. Differential scanning calorimetry was used for analyzing the precipitation sequence and its dependence on the initial heat treatment. The natural aging behavior prior to extrusion and the artificial aging behavior after extrusion were determined by microhardness measurements as a function of the aging time. Furthermore, the microstructure, dependent on the induced strain, was investigated using optical microscopy and transmission electron microscopy. As a result of pre-aging, following a solid-solution treatment, the formation of stable room-temperature clusters was suppressed and natural aging was inhibited. The artificial aging response after extrusion was significantly enhanced by pre-aging, and the achieved hardness and strength were significantly higher when compared with the equally processed solution-annealed or naturally-aged conditions

    Pelvic orthosis effects on posterior pelvis kinematics: An in-vitro biomechanical study

    No full text
    The sacroiliac joint (SIJ) is a well-known source of low back pain, with increasing interest for both conservative and surgical treatment. Alterations in pelvis kinematics are hypothesized as a contributor to SIJ pain and pelvic orthoses one treatment option, but their effects on the pelvis are poorly understood. Alterations in movement patterns induced by the application of pelvic orthoses were determined in five human cadaveric pelvises. Deformations were obtained from the lumbosacral transition and the bilateral SIJ, using digital image correlation and a customized routine to compute the movements within the pelvis. Significant alterations were found for the movements at the SIJ, in particular a vast increase in axial (x-axis) rotation, accompanied by increased inferior (y-) translation of the sacrum relative to the ilium. Movement patterns at the lumbosacral transition changed, causing increases in axial rotation and decreased inferior translation of L5 relative to S1. Using a physiologic mode of load application gives novel insights into the potential effects of pelvic orthoses. The results of these in-vitro experiments vary markedly from previous experiments with loading limited to two or less axes. Furthermore, the influence of pelvic orthoses on the lumbosacral transition warrants further investigation

    Eco-process Engineering System for Collaborative Product Process System Optimisation

    No full text
    Part 2: Knowledge-Based ServicesInternational audienceEco-Process engineering system (EPES) means systematic collaborative eco-efficiency and eco-innovation aspects in product service system (PSS) development and management, and covers all life-cycle phases. It is an ICT tool and related application methodology. The development focus on PSS from functional and cost performance is currently enhanced with sustainability aspects. The goal is to create more value with less environmental impact. In the virtual factories, extended enterprises, the collaboration between different stakeholders, engineers, managers, users of the PSS is a must and all actors in the value chain need a common goal. EPES system provides a collaborative space, covering common data and functionalities for knowledge management, multi-objective decision making, simulation and optimisation. Coordinated evolution (co-evolution) of products, processes and services creates competitive advantage. This paper shows a prototype of EPES system. The software building blocks of EPES system are illustrated as well methodology steps in setting up system and using it
    corecore