71 research outputs found

    Lower Metal Enrichment of Virialized Gas in Minihalos

    Full text link
    We differentiate between the metal enrichment of the gas in virialized minihalos and that of the intergalactic medium at high redshift, pertinent to cosmological reionization, with the initial expectation that gas in the high density regions within formed dark matter halos may be more robust thus resistant to mixing with lower density intergalactic medium. Using detailed hydrodynamic simulations of gas clouds in minihalos subject to destructive processes associated with the encompassing intergalactic shocks carrying metal-enriched gas, we find, as an example, that, for realistic shocks of velocities of 10-100km/s, more than (90%,65%) of the high density gas with rho>500 rhob inside a minihalo virialized at z=10 of mass (10^7,10^6)Msun remains at a metallicity lower than 3% of that of the intergalactic medium by redshift z=6. It may be expected that the high density gas in minihalos becomes fuel for subsequent star formation, when they are incorporated into larger halos where efficient atomic cooling can induce gas condensation hence star formation. Since minihalos virialize at high redshift when the universe is not expected to have been significantly reionized, the implication is that gas in virialized minihalos may provide an abundant reservoir of primordial gas to possibly allow for the formation of Population-III metal-free stars to extend to much lower redshift than otherwise expected based on the enrichment of intergalactic medium.Comment: 22 pages, 7 figures, submitted to ApJ, comments welcom

    Magnetic Amplification by Magnetized Cosmic Rays in SNR Shocks

    Full text link
    (Abridged) X-ray observations of synchrotron rims in supernova remnant (SNR) shocks show evidence of strong magnetic field amplification (a factor of ~100 between the upstream and downstream medium). This amplification may be due to plasma instabilities driven by shock-accelerated cosmic rays (CRs). One candidate is the cosmic ray current-driven (CRCD) instability (Bell 2004), caused by the electric current of large Larmor radii CRs propagating parallel to the upstream magnetic field. Particle-in-cell (PIC) simulations have shown that the back-reaction of the amplified field on CRs would limit the amplification factor of this instability to less than ~10 in galactic SNRs. In this paper, we study the possibility of further amplification driven near shocks by "magnetized" CRs, whose Larmor radii are smaller than the length scale of the field that was previously amplified by the CRCD instability. We find that additional amplification can occur due to a new instability, driven by the CR current perpendicular to the field, which we term the "perpendicular current-driven instability" (PCDI). We derive the growth rate of this instability, and, using PIC simulations, study its non-linear evolution and saturation. We find that PCDI increases the amplification of the field (amplification factor up to ~45, not including the shock compression) and discuss its observational signatures. Our results strengthen the idea of CRs driving a significant part of the magnetic field amplification observed in SNR shocks.Comment: 14 pages, 10 figures; submitted to Ap

    Separating the Weak Lensing and Kinetic SZ Effects from CMB Temperature Maps

    Get PDF
    A new generation of CMB experiments will soon make sensitive high resolution maps of the microwave sky. At angular scales less than \sim10 arcminutes, most CMB anisotropies are generated at z <1000< 1000, rather than at the surface of last scattering. Therefore, these maps potentially contain an enormous amount of information about the evolution of structure. Whereas spectral information can distinguish the thermal Sunyaev-Zeldovich (tSZ) effect from other anisotropies, the spectral form of anisotropies generated by the gravitational lensing and the kinetic Sunyaev-Zeldovich (kSZ) effects are identical. While spectrally identical, the statistical properties of these effects are different. We introduce a new real-space statistic, <θ(n^)3θ(m^)>c<\theta (\hat{n})^3 \theta (\hat{m})>_c, and show that it is identically zero for weakly lensed primary anisotropies and, therefore, allows a direct measurement of the kSZ effect. Measuring this statistic can offer a new tool for studing the reionization epoch. Models with the same optical depth, but different reionization histories, can differ by more than a factor of 3 in the amplitude of the kSZ-generated non-Gaussian signal.Comment: 13 pages, 1 figur

    Non-linear Study of Bell's Cosmic Ray Current-driven Instability

    Full text link
    The cosmic ray current-driven (CRCD) instability, predicted by Bell (2004), consists of non-resonant, growing plasma waves driven by the electric current of cosmic rays (CRs) that stream along the magnetic field ahead of both relativistic and non-relativistic shocks. Combining an analytic, kinetic model with one-, two-, and three-dimensional particle-in-cell simulations, we confirm the existence of this instability in the kinetic regime and determine its saturation mechanisms. In the linear regime, we show that, if the background plasma is well magnetized, the CRCD waves grow exponentially at the rates and wavelengths predicted by the analytic dispersion relation. The magnetization condition implies that the growth rate of the instability is much smaller than the ion cyclotron frequency. As the instability becomes non-linear, significant turbulence forms in the plasma. This turbulence reduces the growth rate of the field and damps the shortest wavelength modes, making the dominant wavelength, \lambda_d, grow proportional to the square of the field. At constant CR current, we find that plasma acceleration along the motion of CRs saturates the instability at the magnetic field level such that v_A ~ v_{d,cr}, where v_A is the Alfven velocity in the amplified field, and v_{d,cr} is the drift velocity of CRs. The instability can also saturate earlier if CRs get strongly deflected by the amplified field, which happens when their Larmor radii get close to \lambda_d. We apply these results to the case of CRs in the upstream medium of supernova remnants. Considering only the most energetic CRs that escape from the shock, we obtain that the field amplification factor of ~10 can be reached. This confirms the CRCD instability as a potentially important component of magnetic amplification process in astrophysical shocks.Comment: 17 pages, 19 figures, submitted to Ap

    Local 2D Particle-in-cell simulations of the collisionless MRI

    Full text link
    The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the rate of Coulomb collisions between particles is very small, making the disk evolve essentially as a collisionless plasma. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell (PIC) plasma simulations. In this initial study we focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field until the Alfv\'en velocity, v_A, is comparable to the speed of light, c (independent of the initial value of v_A/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the perpendicular pressure being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission -- from the radio to the gamma-rays -- of systems such as Sgr A*.Comment: 21 pages, 17 figure

    Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus

    Full text link
    Objective To assess whether genetically determined Amerindian ancestry predicts increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus (SLE). Methods Single-nucleotide polymorphisms (SNPs) within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation between ancestry and the presence of risk alleles was analyzed using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4 , STAT4 , ITGAM , and IRF5 were associated with lupus in a Hispanic Mestizo cohort enriched for European and Amerindian ancestry. In addition, 2 SNPs within the major histocompatibility complex region, previously shown to be associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression, we predicted an average increase of 2.34 risk alleles when comparing an SLE patient with 100% Amerindian ancestry versus an SLE patient with 0% Amerindian ancestry ( P < 0.0001). SLE patients with 43% more Amerindian ancestry were predicted to carry 1 additional risk allele. Conclusion Our results demonstrate that Amerindian ancestry is associated with an increased number of risk alleles for SLE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78480/1/27753_ftp.pd

    Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells

    Get PDF
    Forkhead box P3 (FOXP3)+CD4+CD25+ inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-β (TGF-β) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4+ T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-β (CBFβ) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4+ T cells into Foxp3+ iT reg cells was significantly decreased in adoptively transferred CbfbF/F CD4-cre naive T cells into Rag2−/− mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and CbfbF/F CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4+ CD25high CD127− T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-β mRNA compared with CD4+CD25− cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-β–induced Foxp3 expression in iT reg cell differentiation and function

    Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome

    Get PDF
    A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture

    PAdGUE

    Get PDF
    "Web semántica y patrimonio cultural. Los paisajes y lugares de la Guerra de la Independencia española" (PR-18-HUM-D4-0039) es un proyecto de investigación liderado por la Universidad de Alicante y financiado por la Fundación BBVA. Su objetivo es la creación de esta plataforma inteligente, de diversos recursos digitales y audiovisuales alojados en ella, y el desarrollo de aplicaciones para dispositivo móvil que utilizarán dichos recursos. La plataforma se concibe como una web semántica, donde el sistema de etiquetado de los recursos permite vincularlos entre sí. Gracias a esta transferencia de conocimiento, el proyecto PAdGUE contribuye a la puesta en valor, como patrimonio cultural, de los paisajes de la Guerra de la Independencia española. Y lo hace con la intención de que la comprensión de la guerra y de sus consecuencias contribuya a la cultura de la paz. Los reportajes y los demás recursos, así como las Rutas propuestas, están a disposición de docentes, investigadores/as y gestores del patrimonio y del turismo cultural.Sitio web del proyecto Patrimonio y Paisajes de Guerra: una plataforma inteligente para la puesta en valor de los paisajes de la guerra de la Independencia española como patrimonio cultural.Fundación BBV

    Semi-Automatic Identification and Pre-Screening of Geological–Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets

    Get PDF
    This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.This research was funded by the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation program, with grant agreement No 777630, project MOMIT, “Multiscale Observation and Monitoring of railway Infrastructure Threats” and the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI), and the European Funds for Regional Development (FEDER) under project TEC2017-85244-C2-1-P
    corecore