27 research outputs found

    Ligation of α-Dystroglycan on Podocytes Induces Intracellular Signaling: A New Mechanism for Podocyte Effacement?

    Get PDF
    Contains fulltext : 79974.pdf (publisher's version ) (Open Access)BACKGROUND: Alpha-dystroglycan is a negatively charged glycoprotein that covers the apical and basolateral membrane of the podocyte. Its transmembrane binding to the cytoskeleton is regulated via tyrosine phosphorylation (pY892) of beta-dystroglycan. At the basolateral side alpha-dystroglycan binds the glomerular basement membrane. At the apical membrane, it plays a role in the maintenance of the filtration slit. In this study, we evaluated whether ligation of alpha-dystroglycan with specific antibodies or natural ligands induces intracellular signaling, and whether there is an effect on podocyte architecture. METHODOLOGY/PRINCIPAL FINDINGS: Conditionally immortalized podocytes were exposed in vitro to antibodies to alpha-dystroglycan, and to fibronectin, biglycan, laminin and agrin. Intracellular calcium fluxes, phosphorylation of beta-dystroglycan and podocyte architecture were studied. Antibodies to alpha-dystroglycan could specifically induce calcium signaling. Fibronectin also induced calcium signaling, and led to dephosphorylation of pY892 in beta-dystroglycan. Ligation of alpha-dystroglycan resulted in an altered actin architecture, a decreased number of podocyte pedicles and a more flattened appearance of the podocyte. CONCLUSIONS/SIGNIFICANCE: We conclude that ligation of alpha-dystroglycan on podocytes induces intracellular calcium signaling, which leads to an altered cytoskeleton architecture akin to the situation of foot process effacement. In particular the ability of fibronectin to induce intracellular signaling events is of interest, since the expression and excretion of this protein is upregulated in several proteinuric diseases. Therefore, fibronectin-induced signaling via dystroglycan may be a novel mechanism for foot process effacement in proteinuric diseases

    Heparanase-2 protein and peptides have a protective effect on experimental glomerulonephritis and diabetic nephropathy

    Get PDF
    Introduction: The endothelial glycocalyx degrading enzyme heparanase-1 (HPSE1) is a major contributor to kidney diseases, such as glomerulonephritis and diabetic nephropathy. Therefore, inhibition of HPSE1 could be an interesting therapeutic strategy to treat glomerular diseases. A possible HPSE1 inhibitor is heparanase-2 (HPSE2) because HPSE2 is a structural homolog of HPSE1 without enzymatic activity. The importance of HPSE2 has been recently demonstrated in HPSE2-deficient mice, since these mice developed albuminuria and died within a few months after birth. We postulate that inhibition of HPSE1 activity by HPSE2 is a promising therapeutic strategy to target albuminuria and resulting renal failure.Methods: First, we evaluated the regulation of HPSE2 expression in anti-GBM and LPS-induced glomerulonephritis, streptozotocin-induced diabetic nephropathy, and adriamycin nephropathy by qPCR and ELISA. Second, we measured the HPSE1 inhibiting capacity of HPSE2 protein and 30 different HPSE2 peptides and assessed their therapeutic potential in both experimental glomerulonephritis and diabetic nephropathy using kidney function and cortical mRNA expression of HPSE1 and cytokines as outcome parameters.Results: HPSE2 expression was downregulated under inflammatory and diabetic conditions, whereas this effect on HPSE2 expression was absent with HPSE1 inhibition and in HPSE1-deficient mice. Both HPSE2 protein and a mixture of the three most potent HPSE1 inhibitory HPSE2 peptides could prevent LPS and streptozotocin induced kidney injury.Discussion: Taken together, our data suggest a protective effect of HPSE2 in (experimental) glomerular diseases and support the therapeutic potential of HPSE2 as HPSE1 inhibitor in glomerular diseases

    A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats

    Get PDF
    A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. After immunization of mice with partially-purified heparan sulfate proteoglycan (HSPG) isolated from rat glomeruli, a monoclonal antibody (mAb JM-403) was obtained, which was directed against heparan sulfate (HS), the glycosaminoglycan side chain of HSPG. In ELISA it reacted with isolated human glomerular basement membrane (GBM) HSPG, HS and hyaluronic acid, but not with the core protein of human GBM HSPG, and not with chondroitin sulfate A and C, dermatan sulfate, keratan sulfate and heparin. Furthermore, it did not bind to laminin, collagen type IV or fibronectin. Specificity of JM-403 for HS was also suggested by results of inhibition studies, which found that intact HSPG and HS, but not the core protein, inhibited the binding of JM-403 to HS. In indirect immunofluorescence on cryostat sections of rat kidney, a fine granular to linear staining of the GBM was observed, along with a variable staining of the other renal basement membranes. Pretreatment of the sections with heparitinase completely prevented the binding of mAb JM-403, whereas pretreatment with chondroitinase ABC or hyaluronidase had no effect. The precise binding site of mAb JM-403 was investigated by indirect immunoelec-tron microscopy. It revealed a diffuse staining of the whole width of the GBM. One hour after intravenous injection of JM-403 into rats, the mAb was detected along the glomerular capillary wall in a fine granular pattern, which shifted towards a more mesangial localization after 24 hours. No binding was observed anymore by day 15. Intravenous injection induced a dose-dependent, transient and selective proteinuria that was maximal immediately after the injection. Administration of 2 mg of JM-403 increased the urinary albumin excretion within the first 24 hours after injection from (mean ± SD) 177 ± 19 to 20,755 ± 10,310 µg/24 hr (P < 0.01); the urinary IgG excretion increased from 5.8 ± 2.9 to 236.1 ± 132.2 µg/24 hr (P < 0.03); the selectivity index (clearance IgG/clearance albumin) decreased from 0.33 ± 0.12 to 0.12 ± 0.05 (P < 0.004)

    Over leerloopbanen en loopbaanleren : loopbaancompetenties in het (v)mbo

    No full text
    In het onderzoek staan vier vragen centraal: a. welke verschillende praktijken inzake loopbaanoriëntatie en -begeleiding (LOB-praktijken) zijn momenteel in het vmbo en in het mbo te onderscheiden? b. welke LOB-praktijken dragen bij aan het verwerven van welk soort loopbaancompetenties van leerlingen in het vmbo en in het mbo? c. wat is de relatie tussen loopbaancompetenties enerzijds, en de vorming van een arbeidsidentiteit, de leermotivatie, de uitvalsdreiging en de kwaliteit van de loopbaankeuzes anderzijds? d. welke good practices op het gebied van LOB, die in de bestaande onderwijsorganisatie een min of meer vaste plek hebben gekregen, zijn in het vmbo en mbo te ontdekken

    Autoantibodies against Modified Histone Peptides in SLE Patients Are Associated with Disease Activity and Lupus Nephritis.

    No full text
    Persistent exposure of the immune system to death cell debris leads to autoantibodies against chromatin in patients with systemic lupus erythematosus (SLE). Deposition of anti-chromatin/chromatin complexes can instigate inflammation in multiple organs including the kidney. Previously we identified specific cell death-associated histone modifications as targets of autoantibodies in SLE. In this study we addressed, in a large cohort of SLE patients and controls, the question whether plasma reactivities with specific histone peptides associated with serology and clinical features. Plasma from SLE patients with and without lupus nephritis, disease controls, and healthy controls, were tested in ELISA with histone H4 peptide acetylated at lysines 8, 12 and 16 (H4pac), H2B peptide acetylated at lysine 12 (H2Bpac), H3 peptide trimethylated at lysine 27 (H3pme), and their unmodified equivalents. SLE patients displayed a higher reactivity with the modified equivalent of each peptide. Reactivity with H4pac showed both a high sensitivity (89%) and specificity (91%) for SLE, while H2Bpac exhibited a high specificity (96%) but lower sensitivity (69%). Reactivity with H3pme appeared not specific for SLE. Anti-H4pac and anti-H2Bpac reactivity demonstrated a high correlation with disease activity. Moreover, patients reacting with multiple modified histone peptides exhibited higher SLEDAI and lower C3 levels. SLE patients with renal involvement showed higher reactivity with H2B/H2Bpac and a more pronounced reactivity with the modified equivalent of H3pme and H2Bpac. In conclusion, reactivity with H4pac and H2Bpac is specific for SLE patients and correlates with disease activity, whereas reactivity with H2Bpac is in particular associated with lupus nephritis

    Inhibition of podocyte binding to laminin by anti α-dystroglycan monoclonal antibodies IIH6 and VIA 4.1.

    No full text
    <p>Podocytes were seeded on laminin (A) or collagen A coatings (B) after pre-incubation with either monoclonal antibody IIH6 using TEPC as an isotype control, or with VIA 4.1 using MOPC 21 as an isotype control. Monoclonal antibody IIH6 specifically inhibits podocyte binding to laminin, but not to collagen A.</p

    Ligation of α-dystroglycan results in a loss of pedicles in cultured mouse podocytes.

    No full text
    <p>Differentiated podocytes on collagen coatings were incubated with either monoclonal antibodies IIH6 or VIA 4.1, their respective isotype controls (TEPC or MOPC) or fibronectin. The podocyte pedicles (arrow) are probed with antibodies against Mena (green, which also localizes along stress fibers and in focal contacts at the tips of stress fibers <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0005979#pone.0005979-YanagidaAsanuma1" target="_blank">[58]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0005979#pone.0005979-Asanuma1" target="_blank">[65]</a>). The pedicles were lost after 6 hours of incubation with the antibodies. As these pedicles may be the <i>in vitro</i> manifestation of foot processes, their retraction may imply foot process effacement. Percentage of podocytes with smooth surfaces were counted, which yielded for IIH6 60% <i>versus</i> TEPC 30% (χ<sup>2</sup> = 20.8, p<0.001), for VIA4.1 51% <i>versus</i> MOPC 28% (χ<sup>2</sup> = 9.01, p<0.01) and fibronectin 38% versus control 30% (χ<sup>2</sup> = 1.3, p = 0.25). (Red = phalloidin (actin); blue = DAPI (DNA)).</p

    Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases

    Get PDF
    Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Using monoclonal antibodies (mAbs) recognizing either the core protein or the heparan sulfate (HS) side chain of human GBM heparan sulfate proteoglycan (HSPG), we investigated their glomerular distribution on cryostat sections of human kidney tissues. The study involved 95 biopsies comprising twelve different glomerulopathies. Four normal kidney specimens served as controls. A homogenous to linear staining of the GBM was observed in the normal kidney with anti-HSPG-core mAb (JM-72) and anti-HS mAb (JM-403). In human glomerulopathies the major alteration was a segmental or total absence of GBM staining with anti-HS mAb JM-403, which is most pronounced in lupus nephritis, membranous glomerulonephritis (GN), minimal change disease and diabetic nephropathy, whereas the HSPG-core staining by mAb JM-72 was unaltered. In addition we found HSPG-core protein in the mesangial matrix when this was increased in membranoproliferative GN Type I, Schonlein-Henoch GN, IgA nephropathy, lupus nephritis, diabetic nephropathy and in focal glomerulosclerosis. Also staining with the anti-HS mAb JM-403 became positive within the mesangium, although to a lesser extent. Furthermore, amyloid deposits in AL and AA amyloidosis clearly stained with anti-HSPG-core mAb JM-72, and to a lesser degree with anti-HS mAb JM-403. Finally, in membranous GN (stage II and III), the GBM staining with anti-HSPG-core mAb JM-72 became irregular or granular, probably related to the formation of spikes. In conclusion, major alterations were observed in the glomerular distribution of HS and HSPG-core in various human glomerulopathies. The mAbs can be useful to further delineate the significance of HSPG and HS for glomerular diseases

    Calcium fluxes in cultured mouse podocytes after ligation of α-dystroglycan.

    No full text
    <p>Mouse podocytes were differentiated on collagen A coatings for 2 weeks. Intracellular calcium concentrations were monitored by the fura-2 method, with and without extracellular calcium. Both α-dystroglycan specific monoclonal antibodies induced calcium fluxes, most likely from intracellular stores. Isotype controls were negative (A, B). The laminin G modules-containing proteins agrin and laminin were unable to induce a calcium influx in podocytes (C, D). From the natural ligands of α-dystroglycan tested, fibronectin induced the most pronounced calcium influx. Note that blocking of potential integrin binding sites with a RGD peptide did not influence the fibronectin effect (E). The proteoglycan biglycan induced a modest calcium influx (F).</p
    corecore