106 research outputs found

    Multiple forms of applications and impacts of a design theory -ten years of industrial applications of C-K theory

    No full text
    International audienceC-K theory has been developed by Armand Hatchuel and Benoit Weil and then by other researchers since 1990s. In this paper we show that its very abstract nature and its high degree of universality actually supported a large variety of industrial applications. We distinguish three types of applications: 1) C-K theory provides a new language, that supports new analysis and descriptive capacity and new teachable individual models of thoughts; 2) C-K theory provides a very general framework to better characterize the validity domain and the performance conditions of existing methods, leading to potential improvement of these methods ; 3) C-K theory is the conceptual model at the root of new design methods that are today largely used in the industry

    STRATEGIC-1: A multiple-lines, randomized, open-label GERCOR phase III study in patients with unresectable wild-type RAS metastatic colorectal cancer

    Get PDF
    International audienceBackground: The management of unresectable metastatic colorectal cancer (mCRC) is a comprehensive treatment strategy involving several lines of therapy, maintenance, salvage surgery, and treatment-free intervals. Besides chemotherapy (fluoropyrimidine, oxaliplatin, irinotecan), molecular-targeted agents such as anti-angiogenic agents (bevacizumab, aflibercept, regorafenib) and anti-epidermal growth factor receptor agents (cetuximab, panitumumab) have become available. Ultimately, given the increasing cost of new active compounds, new strategy trials are needed to define the optimal use and the best sequencing of these agents. Such new clinical trials require alternative endpoints that can capture the effect of several treatment lines and be measured earlier than overall survival to help shorten the duration and reduce the size and cost of trials. Methods/Design: STRATEGIC-1 is an international, open-label, randomized, multicenter phase III trial designed to determine an optimally personalized treatment sequence of the available treatment modalities in patients with unresectable RAS wild-type mCRC. Two standard treatment strategies are compared: first-line FOLFIRI-cetuximab, followed by oxaliplatin-based second-line chemotherapy with bevacizumab (Arm A) vs. first-line OPTIMOX-bevacizumab, followed by irinotecan-based second-line chemotherapy with bevacizumab, and by an anti-epidermal growth factor receptor monoclonal antibody with or without irinotecan as third-line treatment (Arm B). The primary endpoint is duration of disease control. A total of 500 patients will be randomized in a 1:1 ratio to one of the two treatment strategies.Discussion: The STRATEGIC-1 trial is designed to give global information on the therapeutic sequences in patients with unresectable RAS wild-type mCRC that in turn is likely to have a significant impact on the management of this patient population. The trial is open for inclusion since August 2013. Trial registration: STRATEGIC-1 is registered a

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≄60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Transcriptional and Epigenetic Regulation of Normal and Malignant B-cell Differentiation : Role of Tet Enzymes and Transcription Factor SPI1

    No full text
    L’ontogenĂšse des lymphocytes B (LB) comporte une premiĂšre phase de diffĂ©renciation, dans la moelle osseuse en l'absence de toute stimulation antigĂ©nique spĂ©cifique, aboutissant au LB immature. La seconde phase, d’activation et de maturation finale, est dĂ©pendante des antigĂšnes et se dĂ©roule dans les organes lymphoĂŻdes secondaires, au sein de structures transitoires appelĂ©es centres germinatifs (CG). Elle gĂ©nĂšre des plasmocytes et des cellules B mĂ©moires spĂ©cifiques d’un antigĂšne.Ce travail de thĂšse s’intĂ©resse Ă  diffĂ©rents acteurs impliquĂ©s dans la rĂ©gulation Ă©pigĂ©nĂ©tique et transcriptionnelle de la diffĂ©renciation lymphoĂŻde B terminale : les enzymes TET2 et TET3 et le facteur de transcription (FT) SPI1/PU.1. Des mutations affectant les gĂšnes codant pour ces protĂ©ines sont trouvĂ©es dans les hĂ©mopathies chez l’Homme et nous avons cherchĂ© Ă  dĂ©terminer leurs consĂ©quences fonctionnelles en utilisant des modĂ©lisations in vivo et in vitro.J’ai d’une part analysĂ© l’impact de la perte de fonction de TET2 sur la diffĂ©renciation et la maturation des cellules B. Les rĂ©sultats montrent un blocage de la diffĂ©renciation plasmocytaire associĂ© Ă  une hyperplasie des CG et une augmentation du pourcentage et du nombre absolu des LB du CG (BGC). L’analyse par PCR quantitative de l’expression des FT importants pour la diffĂ©renciation des BGC et des plasmocytes a montrĂ© que les cellules dĂ©ficientes pour TET2 prĂ©sentent une rĂ©pression du gĂšne Prdm1 codant pour BLIMP1, un rĂ©gulateur essentiel de la diffĂ©renciation plasmocytaire. Je me suis ensuite intĂ©ressĂ©e Ă  TET3, autre protĂ©ine de la famille TET exprimĂ©e dans la lignĂ©e B. Les modĂšles Tet3-dĂ©ficients in vivo et in vitro n’ont pas montrĂ© d’altĂ©ration marquĂ©e de la diffĂ©renciation B terminale.J’ai par ailleurs Ă©tudiĂ© une mutation somatique de SPI1/PU.1, identifiĂ©e par notre Ă©quipe chez des patients atteints de maladie de Waldenström (MW). Dans plus de 95% des cas, la mutation activatrice L265P du gĂšne MYD88 est Ă©galement prĂ©sente. Nous avons montrĂ© que la mutation de SPI1, bien que n'empĂȘchant pas sa liaison Ă  l’ADN, modifie son affinitĂ© de liaison sur les sites normalement reconnus par la forme sauvage. La mutation semble faire adopter Ă  cette protĂ©ine ETS de classe III un comportement qui ressemble Ă  celui d'une classe I/IIa. J’ai ensuite cherchĂ© Ă  documenter les bases de la coopĂ©ration oncogĂ©nique entre SPI1 et MYD88 de deux façons. La premiĂšre, en Ă©tudiant la prolifĂ©ration et la diffĂ©renciation de lymphocytes B naĂŻfs issus d’un modĂšle murin knock-in pour la mutation SPI1 dĂ©veloppĂ© dans l’équipe, transduits avec un rĂ©trovirus apportant la mutation de MYD88. Les rĂ©sultats montrent une augmentation de la prolifĂ©ration dans la condition double mutante ainsi qu’une augmentation de la diffĂ©renciation terminale. La seconde approche consiste Ă  modifier la lignĂ©e humaine BCWM1 de MW par CRISPR/Cas9 afin d’y introduire la mutation de SPI1 en mĂȘme temps que l’expression de la GFP. Ce modĂšle sera notamment utilisĂ© pour rĂ©aliser des expĂ©riences de ChIP-seq afin d’identifier les cibles de la protĂ©ine mutante dans un contexte MW-like.En conclusion, le respect des programmes transcriptionnels est essentiel pour le bon dĂ©roulement de la diffĂ©renciation B terminale et peut ĂȘtre impactĂ© soit directement, par des mutations affectant des FT comme SPI1, soit indirectement lorsque le profil de mĂ©thylation de gĂšnes codant pour des FT (PRDM1) est altĂ©rĂ© suite Ă  des mutations affectant des enzymes comme TET2.B-cell development involves a first phase of differentiation in the bone marrow, in the absence of any specific antigenic stimulation, leading to immature B-cells. The second phase, staging activation and final maturation, is antigen-dependent and takes place in the secondary lymphoid organs, within transient structures called germinal centers (GC). It generates antigen-specific plasma cells and memory B cells.This thesis work focuses on different actors involved in the epigenetic and transcriptional regulation of B-cell differentiation: the enzymes TET2 and TET3 and the transcription factor (TF) SPI1/PU.1. Mutations in genes encoding these proteins are found in human neoplasms, we used in vivo and in vitro models to determine their functional consequences.I analyzed the impact of TET2 loss of function on the differentiation and maturation of B-cells. The results show an impaired plasma cell differentiation associated with GC hyperplasia and an increase in the percentage and absolute number of GC B-cells (BGC). Quantitative PCR analysis of the expression of key BGC and plasma cell TF showed that Tet2-deficient cells exhibit repression of the Prdm1 gene encoding BLIMP1, a master regulator of plasma cell differentiation. I then turned my attention to TET3, another TET family protein expressed in the B-cell lineage. In vivo and in vitro Tet3-deficient models show that the loss of TET3 does not significantly affect terminal B differentiation.In addition, I studied a somatic mutation of SPI1/PU.1, identified by our team in patients with Waldenström's disease (WM). In more than 95% of cases, the L265P activating mutation of MYD88 gene is also present. We have shown that SPI1 mutation, although not preventing its binding to DNA, alters its binding affinity at sites normally recognized by the wild-type form. The mutation appears to cause this class III ETS protein to behave in a manner similar to a class I/IIa ETS protein. I then sought to document the basis for oncogenic cooperation between SPI1 and MYD88 in two ways. First, by studying the proliferation and differentiation of naĂŻve B-cells from a locally developped mouse model knock-in for the SPI1 mutation, transduced with a retrovirus carrying the MYD88 mutation. The results show an increase in proliferation in the double mutant condition as well as an increase of the terminal differentiation. Second, by modifying the human BCWM1 WM cell line by CRISPR/Cas9 in order to introduce the SPI1 mutation at the same time as the expression of the GFP. This model will be used in particular to perform ChIP-seq experiments to identify the targets of the mutant protein in a MW-like context.In conclusion, compliance to transcriptional programs is essential for the smooth progress of B-terminal differentiation and can be impacted either directly, by mutations affecting TF such as SPI1, or indirectly when the methylation profile of key TF-encoding genes (PRDM1) is altered following mutations in enzymes such as TET2

    Régulation transcriptionnelle et épigénétique de la différenciation B normale et tumorale : rÎle des enzymes Tet et du facteur de transcription SPI1

    No full text
    B-cell development involves a first phase of differentiation in the bone marrow, in the absence of any specific antigenic stimulation, leading to immature B-cells. The second phase, staging activation and final maturation, is antigen-dependent and takes place in the secondary lymphoid organs, within transient structures called germinal centers (GC). It generates antigen-specific plasma cells and memory B cells.This thesis work focuses on different actors involved in the epigenetic and transcriptional regulation of B-cell differentiation: the enzymes TET2 and TET3 and the transcription factor (TF) SPI1/PU.1. Mutations in genes encoding these proteins are found in human neoplasms, we used in vivo and in vitro models to determine their functional consequences.I analyzed the impact of TET2 loss of function on the differentiation and maturation of B-cells. The results show an impaired plasma cell differentiation associated with GC hyperplasia and an increase in the percentage and absolute number of GC B-cells (BGC). Quantitative PCR analysis of the expression of key BGC and plasma cell TF showed that Tet2-deficient cells exhibit repression of the Prdm1 gene encoding BLIMP1, a master regulator of plasma cell differentiation. I then turned my attention to TET3, another TET family protein expressed in the B-cell lineage. In vivo and in vitro Tet3-deficient models show that the loss of TET3 does not significantly affect terminal B differentiation.In addition, I studied a somatic mutation of SPI1/PU.1, identified by our team in patients with Waldenström's disease (WM). In more than 95% of cases, the L265P activating mutation of MYD88 gene is also present. We have shown that SPI1 mutation, although not preventing its binding to DNA, alters its binding affinity at sites normally recognized by the wild-type form. The mutation appears to cause this class III ETS protein to behave in a manner similar to a class I/IIa ETS protein. I then sought to document the basis for oncogenic cooperation between SPI1 and MYD88 in two ways. First, by studying the proliferation and differentiation of naĂŻve B-cells from a locally developped mouse model knock-in for the SPI1 mutation, transduced with a retrovirus carrying the MYD88 mutation. The results show an increase in proliferation in the double mutant condition as well as an increase of the terminal differentiation. Second, by modifying the human BCWM1 WM cell line by CRISPR/Cas9 in order to introduce the SPI1 mutation at the same time as the expression of the GFP. This model will be used in particular to perform ChIP-seq experiments to identify the targets of the mutant protein in a MW-like context.In conclusion, compliance to transcriptional programs is essential for the smooth progress of B-terminal differentiation and can be impacted either directly, by mutations affecting TF such as SPI1, or indirectly when the methylation profile of key TF-encoding genes (PRDM1) is altered following mutations in enzymes such as TET2.L’ontogenĂšse des lymphocytes B (LB) comporte une premiĂšre phase de diffĂ©renciation, dans la moelle osseuse en l'absence de toute stimulation antigĂ©nique spĂ©cifique, aboutissant au LB immature. La seconde phase, d’activation et de maturation finale, est dĂ©pendante des antigĂšnes et se dĂ©roule dans les organes lymphoĂŻdes secondaires, au sein de structures transitoires appelĂ©es centres germinatifs (CG). Elle gĂ©nĂšre des plasmocytes et des cellules B mĂ©moires spĂ©cifiques d’un antigĂšne.Ce travail de thĂšse s’intĂ©resse Ă  diffĂ©rents acteurs impliquĂ©s dans la rĂ©gulation Ă©pigĂ©nĂ©tique et transcriptionnelle de la diffĂ©renciation lymphoĂŻde B terminale : les enzymes TET2 et TET3 et le facteur de transcription (FT) SPI1/PU.1. Des mutations affectant les gĂšnes codant pour ces protĂ©ines sont trouvĂ©es dans les hĂ©mopathies chez l’Homme et nous avons cherchĂ© Ă  dĂ©terminer leurs consĂ©quences fonctionnelles en utilisant des modĂ©lisations in vivo et in vitro.J’ai d’une part analysĂ© l’impact de la perte de fonction de TET2 sur la diffĂ©renciation et la maturation des cellules B. Les rĂ©sultats montrent un blocage de la diffĂ©renciation plasmocytaire associĂ© Ă  une hyperplasie des CG et une augmentation du pourcentage et du nombre absolu des LB du CG (BGC). L’analyse par PCR quantitative de l’expression des FT importants pour la diffĂ©renciation des BGC et des plasmocytes a montrĂ© que les cellules dĂ©ficientes pour TET2 prĂ©sentent une rĂ©pression du gĂšne Prdm1 codant pour BLIMP1, un rĂ©gulateur essentiel de la diffĂ©renciation plasmocytaire. Je me suis ensuite intĂ©ressĂ©e Ă  TET3, autre protĂ©ine de la famille TET exprimĂ©e dans la lignĂ©e B. Les modĂšles Tet3-dĂ©ficients in vivo et in vitro n’ont pas montrĂ© d’altĂ©ration marquĂ©e de la diffĂ©renciation B terminale.J’ai par ailleurs Ă©tudiĂ© une mutation somatique de SPI1/PU.1, identifiĂ©e par notre Ă©quipe chez des patients atteints de maladie de Waldenström (MW). Dans plus de 95% des cas, la mutation activatrice L265P du gĂšne MYD88 est Ă©galement prĂ©sente. Nous avons montrĂ© que la mutation de SPI1, bien que n'empĂȘchant pas sa liaison Ă  l’ADN, modifie son affinitĂ© de liaison sur les sites normalement reconnus par la forme sauvage. La mutation semble faire adopter Ă  cette protĂ©ine ETS de classe III un comportement qui ressemble Ă  celui d'une classe I/IIa. J’ai ensuite cherchĂ© Ă  documenter les bases de la coopĂ©ration oncogĂ©nique entre SPI1 et MYD88 de deux façons. La premiĂšre, en Ă©tudiant la prolifĂ©ration et la diffĂ©renciation de lymphocytes B naĂŻfs issus d’un modĂšle murin knock-in pour la mutation SPI1 dĂ©veloppĂ© dans l’équipe, transduits avec un rĂ©trovirus apportant la mutation de MYD88. Les rĂ©sultats montrent une augmentation de la prolifĂ©ration dans la condition double mutante ainsi qu’une augmentation de la diffĂ©renciation terminale. La seconde approche consiste Ă  modifier la lignĂ©e humaine BCWM1 de MW par CRISPR/Cas9 afin d’y introduire la mutation de SPI1 en mĂȘme temps que l’expression de la GFP. Ce modĂšle sera notamment utilisĂ© pour rĂ©aliser des expĂ©riences de ChIP-seq afin d’identifier les cibles de la protĂ©ine mutante dans un contexte MW-like.En conclusion, le respect des programmes transcriptionnels est essentiel pour le bon dĂ©roulement de la diffĂ©renciation B terminale et peut ĂȘtre impactĂ© soit directement, par des mutations affectant des FT comme SPI1, soit indirectement lorsque le profil de mĂ©thylation de gĂšnes codant pour des FT (PRDM1) est altĂ©rĂ© suite Ă  des mutations affectant des enzymes comme TET2

    Régulation transcriptionnelle et épigénétique de la différenciation B normale et tumorale : rÎle des enzymes Tet et du facteur de transcription SPI1

    No full text
    B-cell development involves a first phase of differentiation in the bone marrow, in the absence of any specific antigenic stimulation, leading to immature B-cells. The second phase, staging activation and final maturation, is antigen-dependent and takes place in the secondary lymphoid organs, within transient structures called germinal centers (GC). It generates antigen-specific plasma cells and memory B cells.This thesis work focuses on different actors involved in the epigenetic and transcriptional regulation of B-cell differentiation: the enzymes TET2 and TET3 and the transcription factor (TF) SPI1/PU.1. Mutations in genes encoding these proteins are found in human neoplasms, we used in vivo and in vitro models to determine their functional consequences.I analyzed the impact of TET2 loss of function on the differentiation and maturation of B-cells. The results show an impaired plasma cell differentiation associated with GC hyperplasia and an increase in the percentage and absolute number of GC B-cells (BGC). Quantitative PCR analysis of the expression of key BGC and plasma cell TF showed that Tet2-deficient cells exhibit repression of the Prdm1 gene encoding BLIMP1, a master regulator of plasma cell differentiation. I then turned my attention to TET3, another TET family protein expressed in the B-cell lineage. In vivo and in vitro Tet3-deficient models show that the loss of TET3 does not significantly affect terminal B differentiation.In addition, I studied a somatic mutation of SPI1/PU.1, identified by our team in patients with Waldenström's disease (WM). In more than 95% of cases, the L265P activating mutation of MYD88 gene is also present. We have shown that SPI1 mutation, although not preventing its binding to DNA, alters its binding affinity at sites normally recognized by the wild-type form. The mutation appears to cause this class III ETS protein to behave in a manner similar to a class I/IIa ETS protein. I then sought to document the basis for oncogenic cooperation between SPI1 and MYD88 in two ways. First, by studying the proliferation and differentiation of naĂŻve B-cells from a locally developped mouse model knock-in for the SPI1 mutation, transduced with a retrovirus carrying the MYD88 mutation. The results show an increase in proliferation in the double mutant condition as well as an increase of the terminal differentiation. Second, by modifying the human BCWM1 WM cell line by CRISPR/Cas9 in order to introduce the SPI1 mutation at the same time as the expression of the GFP. This model will be used in particular to perform ChIP-seq experiments to identify the targets of the mutant protein in a MW-like context.In conclusion, compliance to transcriptional programs is essential for the smooth progress of B-terminal differentiation and can be impacted either directly, by mutations affecting TF such as SPI1, or indirectly when the methylation profile of key TF-encoding genes (PRDM1) is altered following mutations in enzymes such as TET2.L’ontogenĂšse des lymphocytes B (LB) comporte une premiĂšre phase de diffĂ©renciation, dans la moelle osseuse en l'absence de toute stimulation antigĂ©nique spĂ©cifique, aboutissant au LB immature. La seconde phase, d’activation et de maturation finale, est dĂ©pendante des antigĂšnes et se dĂ©roule dans les organes lymphoĂŻdes secondaires, au sein de structures transitoires appelĂ©es centres germinatifs (CG). Elle gĂ©nĂšre des plasmocytes et des cellules B mĂ©moires spĂ©cifiques d’un antigĂšne.Ce travail de thĂšse s’intĂ©resse Ă  diffĂ©rents acteurs impliquĂ©s dans la rĂ©gulation Ă©pigĂ©nĂ©tique et transcriptionnelle de la diffĂ©renciation lymphoĂŻde B terminale : les enzymes TET2 et TET3 et le facteur de transcription (FT) SPI1/PU.1. Des mutations affectant les gĂšnes codant pour ces protĂ©ines sont trouvĂ©es dans les hĂ©mopathies chez l’Homme et nous avons cherchĂ© Ă  dĂ©terminer leurs consĂ©quences fonctionnelles en utilisant des modĂ©lisations in vivo et in vitro.J’ai d’une part analysĂ© l’impact de la perte de fonction de TET2 sur la diffĂ©renciation et la maturation des cellules B. Les rĂ©sultats montrent un blocage de la diffĂ©renciation plasmocytaire associĂ© Ă  une hyperplasie des CG et une augmentation du pourcentage et du nombre absolu des LB du CG (BGC). L’analyse par PCR quantitative de l’expression des FT importants pour la diffĂ©renciation des BGC et des plasmocytes a montrĂ© que les cellules dĂ©ficientes pour TET2 prĂ©sentent une rĂ©pression du gĂšne Prdm1 codant pour BLIMP1, un rĂ©gulateur essentiel de la diffĂ©renciation plasmocytaire. Je me suis ensuite intĂ©ressĂ©e Ă  TET3, autre protĂ©ine de la famille TET exprimĂ©e dans la lignĂ©e B. Les modĂšles Tet3-dĂ©ficients in vivo et in vitro n’ont pas montrĂ© d’altĂ©ration marquĂ©e de la diffĂ©renciation B terminale.J’ai par ailleurs Ă©tudiĂ© une mutation somatique de SPI1/PU.1, identifiĂ©e par notre Ă©quipe chez des patients atteints de maladie de Waldenström (MW). Dans plus de 95% des cas, la mutation activatrice L265P du gĂšne MYD88 est Ă©galement prĂ©sente. Nous avons montrĂ© que la mutation de SPI1, bien que n'empĂȘchant pas sa liaison Ă  l’ADN, modifie son affinitĂ© de liaison sur les sites normalement reconnus par la forme sauvage. La mutation semble faire adopter Ă  cette protĂ©ine ETS de classe III un comportement qui ressemble Ă  celui d'une classe I/IIa. J’ai ensuite cherchĂ© Ă  documenter les bases de la coopĂ©ration oncogĂ©nique entre SPI1 et MYD88 de deux façons. La premiĂšre, en Ă©tudiant la prolifĂ©ration et la diffĂ©renciation de lymphocytes B naĂŻfs issus d’un modĂšle murin knock-in pour la mutation SPI1 dĂ©veloppĂ© dans l’équipe, transduits avec un rĂ©trovirus apportant la mutation de MYD88. Les rĂ©sultats montrent une augmentation de la prolifĂ©ration dans la condition double mutante ainsi qu’une augmentation de la diffĂ©renciation terminale. La seconde approche consiste Ă  modifier la lignĂ©e humaine BCWM1 de MW par CRISPR/Cas9 afin d’y introduire la mutation de SPI1 en mĂȘme temps que l’expression de la GFP. Ce modĂšle sera notamment utilisĂ© pour rĂ©aliser des expĂ©riences de ChIP-seq afin d’identifier les cibles de la protĂ©ine mutante dans un contexte MW-like.En conclusion, le respect des programmes transcriptionnels est essentiel pour le bon dĂ©roulement de la diffĂ©renciation B terminale et peut ĂȘtre impactĂ© soit directement, par des mutations affectant des FT comme SPI1, soit indirectement lorsque le profil de mĂ©thylation de gĂšnes codant pour des FT (PRDM1) est altĂ©rĂ© suite Ă  des mutations affectant des enzymes comme TET2

    Reinventing classics: the hidden design strategies of renowned chefs

    No full text
    International audienceReinventing classics is a well-used yet complex design pattern. Indeed, a reinterpreted classic needs to relate to the original object while simultaneously challenging the initial model and providing a new and fresh look to the well established classic. However, this design strategy remains understudied, and we aimed to contribute to the literature by addressing the lack of theoretical models for reinventing classics. Reinterpreting tradition is a key process for chefs in the culinary world. Our paper explores how design theories elucidate how chefs reinterpret classics and innovate in their kitchens by stepping away from tradition. Our contribution to the study of design is twofold. First, from a methodological point of view, we used a framework basedon C–K theory and axiomatic design theory to conduct a comparative analysis of recipes for 30 dishes that were reinterpreted by the renowned chef Alain Ducasse. Second, our study identified two design regimes used by chefs to reinvent classics by focusing on the nature of the set of functions a recipe aims to fulfill. The first regime consists of retaining the same functions from the original recipe while changing the means to achieve them. The second requires changing the set of functions by removing old ones, adding new ones, and occasionally designing new ways to achieve the functions
    • 

    corecore