11 research outputs found
Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1α), and other RDM1 isoforms. We show that RDM1α undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response
Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.
International audienceNuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intra-nuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted Chromosome 19 MicroRNA Cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most likely concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA
Deletion of the miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour
International audienc
A Large Imprinted microRNA Gene Cluster at the Mouse Dlk1-Gtl2 Domain
microRNAs (or miRNAs) are small noncoding RNAs (21 to 25 nucleotides) that are processed from longer hairpin RNA precursors and are believed to be involved in a wide range of developmental and cellular processes, by either repressing translation or triggering mRNA degradation (RNA interference). By using a computer-assisted approach, we have identified 46 potential miRNA genes located in the human imprinted 14q32 domain, 40 of which are organized as a large cluster. Although some of these clustered miRNA genes appear to be encoded by a single-copy DNA sequence, most of them are arranged in tandem arrays of closely related sequences. In the mouse, this miRNA gene cluster is conserved at the homologous distal 12 region. In vivo all the miRNAs that we have detected are expressed in the developing embryo (both in the head and in the trunk) and in the placenta, whereas in the adult their expression is mainly restricted to the brain. We also show that the miRNA genes are only expressed from the maternally inherited chromosome and that their imprinted expression is regulated by an intergenic germline-derived differentially methylated region (IG-DMR) located âŒ200 kb upstream from the miRNA cluster. The functions of these miRNAs, which seem only conserved in mammals, are discussed both in terms of epigenetic control and gene regulation during development
A Chemical Signature for Cytidine Acetylation in RNA
International audienc
Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
International audienceNAT10 is an essential enzyme that catalyzes N 4acetylcytidine (ac 4 C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac 4 C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac 4 C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification