183 research outputs found

    At-sea behaviour of the world's northernmost harbour seal (Phoca vitulina) population in a changing Arctic

    Get PDF
    Paper III of this thesis is not available in Munin: Blanchet, M.-A. et al. Harbor seal ontogeny of behavior. Making it through the first year: Ontogeny of movement and diving behavior in harbor seals from Svalbard, Norway. (Manuscript)The earth is experiencing warming at a rate that challenges the adaptive capacities of many animal species. Because marine mammals can integrate and reflect ecological variation across various spatial and temporal scales, they are prime sentinels of marine ecosystem change. This thesis explores movement patterns and foraging behaviour, and the ontogeny of these behaviours, in harbour seals (Phoca vitulina) from the world’s northernmost population in Svalbard, Norway, in the context of local environmental conditions. Sixty harbour seals, including pup, juvenile and adult age classes, were instrumented near the main breeding site for this population on Forlandsøyene, west of Prins Karl Forland in 2009 and 2010 with Conductivity-Temperature-Depth Satellite-Relay-Data-loggers (CTD-SRDLs) for the adults and juveniles and smaller Satellite-Relay-Data-loggers (SRDLs) for the pups. The seals showed a strong preference for the west side of the archipelago, where they stayed within 50 km of the coast on the shelf, seldom entering the fjord systems especially in the winter. Some pups ventured out of the west coast shelf area occasionally, with individuals that explored the Bjørnøya region or the east coast of Spitsbergen. The transition from maternal dependence to independent foraging occurred at a young age and was quite abrupt. Marked changes in movement and diving patterns were observed when the pups were approximately 50 days of age. The core area occupied by the seals is characterized by complex oceanographic conditions and intense mixing between masses of Arctic Water and Atlantic Water from the West Spitsbergen Current (WSC). The adult and juvenile seals diving behaviour had a marked seasonality and was influenced by local wind-driven upwelling phenomenon. During upwelling events, the West Spitsbergen Shelf is flooded by Atlantic Water masses, which were specifically targeted by the seals. Presumably these water masses brought Atlantic fish species close to shore and within the seals’ foraging depth-range. However, no strong correlation between dive parameters and upwelling events was found for the pups. This study strongly suggests that the influence of the WSC on the western part of the Svalbard Archipelago is a determining factor for the presence of this harbour seal population in the High Arctic. The predicted warming will likely favour an increased abundance and a broader distribution of harbour seals through a borealization of the marine ecosystem in the coastal areas of the Svalbard Archipelago

    The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena)

    Get PDF
    In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent

    Testing the acoustic tolerance of harbour porpoise hearing for impulsive sounds

    Get PDF
    The planned construction of offshore wind turbines in the North and Baltic Seas involves the emission of high numbers of intense impulsive sounds when turbine foundations are driven into the ground by pile driving. Based on knowledge about other odontocete cetaceans (Finneran et al. 2002), it can be assumed that the source levels, which will on average exceed 225 dB re 1 μPa at 1 m, bear a risk at least for temporary threshold shift (TTS) in the auditory system of harbour porpoises Phocoena phocoena that inhabit these waters. In order to base the definition of noise-exposure criteria on information on the acoustic tolerance of this species to single impulses, an auditory study was conducted

    Killer whales are attracted to herring fishing vessels

    Get PDF
    ABSTRACT: Marine mammals and fisheries often target the same resources, which can lead to operational interactions. Potential consequences of operational interaction include entanglements and damaged or reduced catches but also enhanced foraging opportunities, which can attract marine mammals to fishing vessels. Responsible fisheries management therefore requires detailed knowledge of the impact of these interactions. In northern Norway, killer whales Orcinus orca are frequently observed in association with large herring aggregations during the winter. We use a combination of biotelemetry and fisheries data to study if, to what extent and at what distances killer whales are attracted to fishing activity. Twenty-five satellite transmitters were deployed on killer whales at herring overwintering and spawning grounds, often near fishing vessels. Over 50% of the killer whale core areas of high usage overlapped with the fisheries core areas, and individual whales spent up to 34% of their time close to active fishing. We used a 3-state hidden Markov model to assess whether killer whale movements were biased towards fishing activities. Of the overall whale movements, 15% (CI = 11-21%) were biased towards fishing activities, with marked heterogeneity among individuals (0-57%). During periods of active fishing, whale movements were biased towards fishing events 44% (CI = 24-66%) of the time, with individual percentages ranging from 0 to 79%. Whales were more likely to be attracted when they were within 20 km. This information can be used in fishery management to consider potential consequences for fishers and whales.publishedVersio

    Foraging movements of humpback whales relate to the lateral and vertical distribution of capelin in the Barents Sea

    Get PDF
    Understanding how individual animals modulate their behaviour and movement patterns in response to environmental variability plays a central role in behavioural ecology. Marine mammal tracking studies typically use physical environmental characteristics that vary, and/or proxies of prey distribution, to explain predator movements. Studies linking predator movements and the actual distributions of prey are rare. Here we analysed satellite tag data from ten humpback whales in the Barents Sea (north-east Atlantic) to examine how their spatial movement and dive patterns are influenced by the geographic and vertical distribution of capelin, which is a key prey species for humpback whales. We used capelin density estimates based on direct observations from a trawl-acoustic survey and sun elevation to explore the drivers of changes in movement patterns. We found that the humpback whales’ exhibited characteristic area restricted search movement where capelin density was the highest. While horizontal movements showed both positive and negative individual relationships with sun elevation, humpback whale dive depth was positively correlated with diurnal variations in the vertical distribution of capelin. This suggests that in addition to whales foraging in regions of high capelin density, they also target the densest shoals of capelin at a range of depths, throughout the day and night. Overall, our findings suggest that regions of high capelin density are important foraging grounds for humpback whales, highlighting the central role capelin plays in the Barents Sea marine ecosystem

    Overexploitation, Recovery, and Warming of the Barents Sea Ecosystem During 1950–2013

    Get PDF
    The Barents Sea (BS) is a high-latitude shelf ecosystem with important fisheries, high and historically variable harvesting pressure, and ongoing high variability in climatic conditions. To quantify carbon flow pathways and assess if changes in harvesting intensity and climate variability have affected the BS ecosystem, we modeled the ecosystem for the period 1950–2013 using a highly trophically resolved mass-balanced food web model (Ecopath with Ecosim). Ecosim models were fitted to time series of biomasses and catches, and were forced by environmental variables and fisheries mortality. The effects on ecosystem dynamics by the drivers fishing mortality, primary production proxies related to open-water area and capelin-larvae mortality proxy, were evaluated. During the period 1970–1990, the ecosystem was in a phase of overexploitation with low top-predators’ biomasses and some trophic cascade effects and increases in prey stocks. Despite heavy exploitation of some groups, the basic ecosystem structure seems to have been preserved. After 1990, when the harvesting pressure was relaxed, most exploited boreal groups recovered with increased biomass, well-captured by the fitted Ecosim model. These biomass increases were likely driven by an increase in primary production resulting from warming and a decrease in ice-coverage. During the warm period that started about 1995, some unexploited Arctic groups decreased whereas krill and jellyfish groups increased. Only the latter trend was successfully predicted by the Ecosim model. The krill flow pathway was identified as especially important as it supplied both medium and high trophic level compartments, and this pathway became even more important after ca. 2000. The modeling results revealed complex interplay between fishery and variability of lower trophic level groups that differs between the boreal and arctic functional groups and has importance for ecosystem management

    Round-trip migration and energy budget of a breeding female humpback whale in the Northeast Atlantic

    Get PDF
    In the northern hemisphere, humpback whales (Megaptera novaeangliae) typically migrate between summer/autumn feeding grounds at high latitudes, and specific winter/spring breeding grounds at low latitudes. Northeast Atlantic (NEA) humpback whales for instance forage in the Barents Sea and breed either in the West Indies, or the Cape Verde Islands, undertaking the longest recorded mammalian migration (~ 9 000 km). However, in the past decade hundreds of individuals have been observed foraging on herring during the winter in fjord systems along the northern Norwegian coast, with unknown consequences to their migration phenology, breeding behavior and energy budgets. Here we present the first complete migration track (321 days, January 8th, 2019—December 6th, 2019) of a humpback whale, a pregnant female that was equipped with a satellite tag in northern Norway. We show that whales can use foraging grounds in the NEA (Barents Sea, coastal Norway, and Iceland) sequentially within the same migration cycle, foraging in the Barents Sea in summer/fall and in coastal Norway and Iceland in winter. The migration speed was fast (1.6 ms-1), likely to account for the long migration distance (18 300 km) and long foraging season, but varied throughout the migration, presumably in response to the calf’s needs after its birth. The energetic cost of this migration was higher than for individuals belonging to other populations. Our results indicate that large whales can modulate their migration speed to balance foraging opportunities with migration phenology, even for the longest migrations and under the added constraint of reproduction

    Beneficial effects of reconstituted high-density lipoprotein (rHDL) on circulating CD34+ cells in patients after an acute coronary syndrome

    Get PDF
    Background: High-density lipoproteins (HDL) favorably affect endothelial progenitor cells (EPC). Circulating progenitor cell level and function are impaired in patients with acute coronary syndrome (ACS). This study investigates the short-term effects of reconstituted HDL (rHDL) on circulating progenitor cells in patients with ACS. Methods and Findings: The study population consisted of 33 patients with recent ACS: 20 patients from the ERASE trial (randomized to receive 4 weekly intravenous infusions of CSL-111 40 mg/kg or placebo) and 13 additional patients recruited as controls using the same enrolment criteria. Blood was collected from 16 rHDL (CSL-111)-treated patients and 17 controls at baseline and at 6–7 weeks (i.e. 2–3 weeks after the fourth infusion of CSL-111 in ERASE). CD34+ and CD34+/kinase insert domain receptor (KDR+) progenitor cell counts were analyzed by flow cytometry. We found preserved CD34+ cell counts in CSL-111-treated subjects at follow-up (change of 1.6%), while the number of CD34+ cells was reduced (-32.9%) in controls (p = 0.017 between groups). The level of circulating SDF-1 (stromal cell-derived factor-1), a chemokine involved in progenitor cell recruitment, increased significantly (change of 21.5%) in controls, while it remained unchanged in CSL-111-treated patients (p = 0.031 between groups). In vitro exposure to CSL-111 of early EPC isolated from healthy volunteers significantly increased CD34+ cells, reduced early EPC apoptosis and enhanced their migration capacity towards SDF-1. Conclusions: The relative increase in circulating CD34+ cells and the low SDF-1 levels observed following rHDL infusions in ACS patients point towards a role of rHDL in cardiovascular repair mechanisms

    Auditory studies on harbour porpoises in relation to offshore wind turbines

    Get PDF
    The effects of offshore wind turbines on harbour porpoises (Phocoena phocoena) can be studied from different perspectives. Line transect surveys and static or towed acoustic monitoring are valuable tools to describe the status or trend in distribution and abundance of these animals within certain areas and telemetry studies provide insight in the behaviour and habitat use of individual animals. These methods are indispensable in many respects but they are descriptive by nature and can not explain or predict why extend the observed effects occur. In this sense they are complimentary to studies on the cause-effect relationship of the presence of or emissions from offshore wind turbines (OWT’s) and their direct effect on individual animals. Electromagnetic and visual inputs from OWT’s are likely to be negligible in this context, either because of their low strength of emissions or comparatively low sensitivity of harbour porpoises to such stimuli. In contrast the OWT-related acoustic emissions can repeatedly reach extreme intensities. There is a direct and highly relevant link between acoustic emissions and harbour porpoises as these animals have a very acute hearing and rely vitally on this sense. The understanding of noiseinduced effects and data on the tolerance of the animals hearing system to such sounds is critical for the assessment of the overall effect of OWT’s on harbour porpoises

    Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways

    Get PDF
    2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs).We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2-glycerol [PGE2-G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG ≥ 15-HETE-G >> PGE2-G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4′-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, Nmethyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4′-(aminocarbonyl) [1,1′-biphenyl]-4-yl ester carbamic acid (WWL70), 4′-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1′-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2-G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2-G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2-G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they expressmanyMAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ~52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo
    • …
    corecore