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Abstract

Background

High-density lipoproteins (HDL) favorably affect endothelial progenitor cells (EPC). Circulat-

ing progenitor cell level and function are impaired in patients with acute coronary syndrome

(ACS). This study investigates the short-term effects of reconstituted HDL (rHDL) on circu-

lating progenitor cells in patients with ACS.

Methods and Findings

The study population consisted of 33 patients with recent ACS: 20 patients from the ERASE

trial (randomized to receive 4 weekly intravenous infusions of CSL-111 40 mg/kg or pla-

cebo) and 13 additional patients recruited as controls using the same enrolment criteria.

Blood was collected from 16 rHDL (CSL-111)-treated patients and 17 controls at baseline

and at 6–7 weeks (i.e. 2–3 weeks after the fourth infusion of CSL-111 in ERASE). CD34+

and CD34+/kinase insert domain receptor (KDR+) progenitor cell counts were analyzed by

flow cytometry. We found preserved CD34+ cell counts in CSL-111-treated subjects at fol-

low-up (change of 1.6%), while the number of CD34+ cells was reduced (-32.9%) in controls

(p = 0.017 between groups). The level of circulating SDF-1 (stromal cell-derived factor-1), a

chemokine involved in progenitor cell recruitment, increased significantly (change of 21.5%)

in controls, while it remained unchanged in CSL-111-treated patients (p = 0.031 between

groups). In vitro exposure to CSL-111 of early EPC isolated from healthy volunteers signifi-

cantly increased CD34+ cells, reduced early EPC apoptosis and enhanced their migration

capacity towards SDF-1.
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Conclusions

The relative increase in circulating CD34+ cells and the low SDF-1 levels observed following

rHDL infusions in ACS patients point towards a role of rHDL in cardiovascular repair

mechanisms.

Introduction

Several studies have consistently supported high-density lipoprotein (HDL)-cholesterol as a

significant, strong, and independent inverse predictor of cardiovascular risk, even when low-

density lipoprotein cholesterol (LDL-C) is reduced to very low levels by high dose statins[1].

While the inverse association between HDL-C and cardiovascular outcomes has been proven

to be very robust, recent high profile pharmacological intervention studies and a Mendelian

randomization analysis have challenged the concept that raising endogenous plasma HDL-C

will uniformly translate into improved cardiovascular outcomes[2,3]. These recent studies

have caused growing awareness that the effects of HDL may vary in different clinical settings

and that an increase of dysfunctional HDL particles could also be detrimental, a phenomenon

referred as ‘HDL dysfunction’. Indeed, population-based studies indicate that a substantial

proportion of patients with ACS present with reduced or dysfunctional HDL which, in turn, is

associated with a higher risk of early recurrent cardiovascular events[4,5,6]. As a consequence,

exogenous HDL has been suggested as a treatment option for modifying the high-risk state fol-

lowing ACS and beneficial effects on coronary atherosclerosis in patients with ACS have been

suggested after infusions of reconstituted HDL (rHDL)[7,8].

While the anti-atherosclerotic action of HDL is believed to be mostly related to its role in

reverse cholesterol transport, experimental data indicate that rHDL may promote re-endothe-

lialization by improving endothelial progenitor cell (EPC) levels and functionality[9]. Accord-

ingly, low plasma HDL-C levels have been reported to be associated with a decreased number

of EPCs[10]. Progenitor cell based therapies might also reduce short- and long-term recurrent

cardiovascular events in patients with ACS[11], and in vivo data indicate that vascular repair

by EPCs might be one of the underlying mechanisms[12,13]. Following percutaneous coro-

nary intervention (PCI), bone marrow-derived stem and vascular progenitor cells that express

stem-cell-like antigens such as CD34 are mobilized, rapidly recruited to sites of injury thereby

inhibiting further platelet activation and leading to neovascularization, improved left ventricu-

lar function and reduced myocardial lesion area[14,15]. However, several populations, includ-

ing patients with ACS, seem to fail to respond to PCI with progenitor cell mobilization,

resulting in increased mortality and more significant left ventricular remodeling[16,17,18,19].

An epidemiologic study showed an association of statin use with higher CD34+ progenitor

cell counts, thereby supporting the hypothesis that levels of EPCs may be influenced therapeu-

tically[20]. Indeed, moderate-dose atorvastatin increased CD34+ cells in patients with myocar-

dial infarction, and systemic rHDL infusion can improve the availability of CD34+ cells in

patients with type 2 diabetes[21]. However, whether infusions of rHDL can favorably influence

EPCs or CD34+ progenitor cells in the setting of recent ACS is not known.

Given that 1- endogenous HDL and progenitor cell functions are impaired in ACS patients,

a population characterized by a high short-term risk for recurrent ischaemic events, 2- EPCs,

CD34+ progenitors and rHDL may exert rapid beneficial effects on some atherosclerotic pla-

que characteristics, and 3- rHDL increases EPC levels in vivo in patients with diabetes, we

hypothesized that some of the beneficial effects of rHDL infusions may be mediated via an
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improvement of circulating EPC or CD34+ progenitor levels and function in patients with

ACS.

Methods

Subjects

The study population consisted of 33 patients with recent ACS: 20 patients from the ERASE

trial (16 CSL-111-treated and 4 placebo-treated patients) and 13 additional patients who were

recruited as controls using the ERASE enrolment criteria[8]. Further, twenty-six patients with-

out ACS and with normal coronary arteries who underwent coronary angiography for differ-

ent reasons served as controls for baseline EPC measurements. Details of the ERASE trial

were previously published[8]. Briefly, ERASE was a randomized, double-blind, placebo-con-

trolled, multicentre trial which evaluated the effects of the rHDL CSL-111 (CSL Ltd, Parkville,

Australia) on plaque burden as assessed by intravascular ultrasonography in patients who were

recruited within 2 weeks of an ACS, defined as unstable angina, non-ST-segment elevation

myocardial infarction (MI) or ST-segment elevation MI. Patients with significant left main

coronary artery disease (� 50% stenosis), renal insufficiency, liver disease, active cholecystitis,

uncontrolled diabetes mellitus, New York Heart Association (NYHA) class III or IV heart

failure, known soybean allergy, history of alcohol or drug abuse, planned anticoagulation

treatment, or previous or planned coronary bypass graft surgery were excluded from study

participation. Patients were randomized to receive 4 weekly intravenous infusions of placebo

or CSL-111 40 mg/kg. Blood collection was performed at baseline (prior to the first infusion)

and then at 6 to 7 weeks (2 to 3 weeks after the fourth study infusion). For the 13 additional

control subjects with ACS recruited, blood was also collected at baseline and at 6 to 7 weeks

(similar to the subjects of the ERASE trial).

To evaluate the effects of CSL-111 on cell adhesion, growth, apoptosis and migration, we

performed in vitro experiments on blood collected from 10 additional healthy subjects. The

study complied with the declaration of Helsinki and was approved by the Institutional Review

Board of the Montreal Heart Institute, with all subjects providing written informed consent.

Blood Sampling and Circulating Progenitor Quantification by Flow

Cytometry

Venous blood was collected in the recumbent position (35 mL in potassium-EDTA-containing

tubes and 5 mL in tubes without anticoagulant for separation of serum). The blood samples

were immediately transported to laboratories for processing. EPCs were quantified in triplicate

using previously reported guidelines for progenitor cell enumeration[22] with some modifica-

tions. Briefly, 100 μL of blood was immunostained for 10 minutes at room temperature with

anti-human KDR antibody[23,24] (Abcam, Cambridge, MA; conjugated using Zenon1 Alexa

Fluor1647-RPE labeling kit, Invitrogen, Burlington, ON). Then, Stem-Kit™ (Beckman Coul-

ter, Brea, CA) monoclonal antibodies (mAbs) were added using a fluorescein isothiocyanate

(FITC)-conjugated anti-human CD45 antibody and a phycoerythrin (PE)-conjugated anti-

CD34 antibody for 20 minutes at room temperature. Isotype-identical antibodies were used as

controls. Following incubation, erythrocytes were lysed using 1x NH4Cl lysing solution pro-

vided with the Stem-Kit for 10 minutes at room temperature prior to cytometry analysis.

Stem-count fluorospheres were added to samples to determine absolute EPC counts by flow

cytometry (Beckman Coulter EPICS1 XL™ flow cytometer).

We used a modification of the Stem-Kit protocol which itself is based on the ISHAGE guide-

lines for CD34+ cell determination by flow cytometry[25]. As indicated in a representative
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example (Fig 1), histogram 1 displays all events except the fluorospheres (shown on histogram

7, R8). The region R1 is positioned to include all CD45+ events. This region will exclude

CD45 negative events (i.e. red blood cells, platelets and cell debris). The region R6 represents

lymphocytes (bright CD45, low scatter). Histogram 2 displays events from region R1. The

region R2 is adjusted to include CD34+ cells with low Side Scatter. Histogram 3 is showing

the events from regions R1 and R2. The region R3 is placed to include the low Side Scatter

and low to intermediate CD45 staining. Histogram 4 represents all events from regions R1,

R2 and R3 displayed on a FSC vs SSC dot plot to confirm that the selected events fall into a

lymph-blast region (R4). CD34+ cells number is counted in the region R4 (events meeting all

the fluorescence and light scatter criteria of ISHAGE Guidelines for CD34+ cells). CD34+

number determination was performed in triplicate for each patients and the mean CD34+

value was used. An appropriate isotype control was used as a control. Histogram 5 displays

the events included in regions R1, R2, R3 and R4. A quadrant was positioned to separate the

positive and the negative cells for VEGFR2 staining. An appropriate isotype control was used

to adequately place the quadrant. Region R5 represents the total EPCs (CD34+/VEGFR2+

cells). Histogram 6 shows events from region R6. This region is used to set the region R4 (his-

togram 4) to include events no smaller than lymphocytes. Histogram 7 represents all events.

This histogram is useful to establish the lower limit of CD45 expression for the CD34+ events.

The region R8 is placed in the right top of the histogram to count all Stem-count fluoro-

spheres accumulated for each sample for absolute quantification. Histogram 8 shows events

from region R8. This region includes the Stem-count fluorospheres singlet population. It is

used to verify that fluorospheres accumulate constantly over time. Absolute numbers of

CD34+ and CD34+/KDR+ cells per μL of blood were determined and results were expressed

as relative changes from the respective baseline values.

ELISA Assays

Serum levels of VEGF and stromal cell-derived factor-1 (SDF-1) were quantified by ELISA

(Quantikine kits, R&D Systems).

In Vitro Experiments with CSL-111

One hundred mL of venous blood was collected on sodium citrate anticoagulant from each of

the 7 healthy volunteers for in vitro experiments (exposure of early EPC (eEPC) to CSL-111).

Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation

(Ficoll-Paque™ PLUS medium, GE Healthcare, QC), plated at a density of 1.5 x 106/cm2 on

four fibronectin-coated plates (BD Biosciences, Mississauga, ON), and cultured under 5% CO2

(37˚C) in endothelial growth media (EGM1-2, Lonza, QC), which was supplemented with

20% embryonic stem cell-qualified fetal-bovine serum (Invitrogen, Burlington, ON). For each

of the dishes, cells were exposed to 1 mg/mL of CSL-111 for either days 0 to 4, days 4 to 7, days

0 to 7, or unexposed. Non-adherent cells were removed by washing after 4 days in culture, for

eEPC culture. On day 7, adherent cells were harvested and stained with antibodies against

CD34 (FITC-conjugated) and KDR (APC-conjugated). Cells were incubated for 30 minutes at

4˚C before the addition of 50 000 SpheroTM AccuCount fluorescent beads (Spherotech Inc.)

and their analysis on a BD LSRII flow cytometer. Apoptosis of the treated and untreated

eEPCs was quantified in the following fashion: After 7 days in culture, eEPCs were washed,

harvested by mild treatment with dispase (0.5 mg/mL), stained with Annexin V conjugated to

Alexa Fluor 350 and with propidium iodide (BD Biosciences, Mississauga, ON) and then ana-

lyzed by flow cytometry.

rHDL and CD34+ after ACS
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Transwell Migration Assay

eEPC migration was assessed using modified Boyden chambers. Briefly, eEPCs from healthy

volunteers (n = 3) were cultured in presence or absence of CSL-111 as above and then har-

vested and resuspended in DMEM containing 10% (v/v) FBS. A polycarbonate filter mem-

brane (5-μm-pore-diameter; Neuroprobe) was placed on the top of the lower wells, the latter

filled with the medium mentioned above and supplemented with SDF-1 (100 ng/mL) as a che-

moattractant. The chamber was tightened and cell suspensions (4 x 105 cells/cm2) were added

to the upper wells. After allowing cell migration for 16 hours, cells were scraped from the

upper side of membranes using Kimwipes/cotton swab. The membrane with migrated cells

was fixed and stained using Diff-quick (Thermo Fisher Scientific) staining kit. Stained cells

were then counted directly under the microscope using 40X objective. Each experiment was

assayed in quadruplicate and 3 randomly selected high-power fields for each well were counted

to determine the number of cells that had migrated. Migration is presented as the chemotactic

index, obtained by division of the number of migrating cells in the treated groups by the num-

ber of migrating cells in the corresponding control wells.

Statistical Analyses

Statistical analyses were conducted at the Montreal Heart Institute Coordinating Centre

(MHICC) using SAS (version 9.1 or higher, SAS Institute, Cary, NC). Categorical data were

expressed as frequencies and percentages. For continuous variables, depending on the dis-

tribution of the data, results are expressed as mean ± standard deviation or median (Q1;

Q3). Baseline characteristics were compared between groups using Student t-test or chi-

square test where appropriate. Comparisons of experimental data between the CSL-

111-treated group vs control were made by the Mann-Whitney test. Between-group com-

parisons of the time lapses between ACS and baseline blood collection as well as between

baseline and follow-up were assessed using the Student t-test or the Mann-Whitney test, as

appropriate. For the parameters measured during the CSL-111 in vitro treatments, the over-

all effect of exposure to CSL-111 (days 0 to 4, days 4 to 7, days 0 to 7, or unexposed) was

tested using the Friedman test and, if significant, Wilcoxon signed-rank tests were used to

compare paired types of exposure. A mixed model analysis of variance (ANOVA) with

terms for block (to account for the fact that patients contribute to data in quadruplicate),

exposure to CSL-111, SDF-1 (yes/no) and interaction exposure to CSL-111 x SDF-1 was

used to compare the EPC among the combinations of exposure to CSL-111/SDF-1 in the

migration assay. The appropriate pairwise comparisons followed if global F tests were sig-

nificant. Statistical significance was defined as p < 0.05.

Fig 1. Representative example of sequential gating strategy for flow cytometric analysis of

endothelial progenitor cells. A modified ISHAGE strategy was applied for EPC quantification. 1)

Representative sample stained with CD45-FITC. Region R6 represents lymphocytes. 2) Anti-CD34-PE

staining of cells from R1. Region R2 represents CD34+ cells. 3) Region R3 is placed to include the low Side

Scatter and low to intermediate CD45 staining. 4) R4 represents all events from regions R1, R2 and R3

displayed on a FSC vs SSC dot plot to confirm that the selected events fall into a lymph-blast region. 5)

Displays the events included in regions R1, R2, R3 and R4. A quadrant was positioned to separate the

positive and the negative cells for VEGFR2 staining. An appropriate isotype control was used to adequately

place the quadrant. Region R5 represents the total EPCs (CD34+/VEGFR2+ cells). 6) Events from region R6.

This region is used to set the region R4. 7) All events. This histogram is useful to establish the lower limit of

CD45 expression for the CD34+ events. The region R8 is placed in the right top of the histogram to count all

Stem-count fluorospheres accumulated for each sample for absolute quantification. 8) Events from region R8.

This region includes the Stem-count fluorospheres singlet population.

doi:10.1371/journal.pone.0168448.g001
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Results

The baseline characteristics of the groups of CSL-111-treated patients and control patients

were similar (Table 1). Also, there was no significant difference between groups in terms of

days from presentation with ACS to the time of baseline blood collection for progenitor cells

(3.3+/-2.8 and 2.6+/-1.4 days after myocardial infarction (MI) for controls and CSL-111-

treated patients, respectively) and in the median number of days from ACS event to the fol-

low-up sampling (43 [40–46] and 39 [39–41] days after MI for controls and CSL-111-treated

patients, respectively). A slightly higher BMI was found in the 4 placebo-treated patients as

compared to the 13 additional patients who were recruited as controls using the ERASE enrol-

ment criteria (p = 0.04).

We first measured the levels of circulating progenitor cells in ACS patients and normal con-

trols at baseline. As compared to patients with normal coronary arteries (n = 26), patients with

ACS (n = 29) had significantly higher levels of both, CD34+ and CD34+/KDR+ progenitor cells

(p<0.0001 and p = 0.001, respectively, Figure A in S1 File, S1 Table). The follow-up samples

for the CSL-111-treated ACS patients were obtained 16 ± 4 days following completion of the 4

weekly rHDL infusions. The median relative changes in CD34+ progenitor cells, as quantified

by flow cytometry from blood samples collected at baseline and in the follow-up, were -32.9%

and 1.6% for the control group and CSL-111-treated group, respectively (p = 0.017, Fig 2A, S2

Table). These significant differences between control group and CSL-111-treated group per-

sisted when changes in CD34+ progenitor cells in relation to total number of leucocytes

(CD45+ cells) were analysed (p = 0.03, Figure B in S1 File). In contrast, the median relative

changes in CD34+/KDR+ endothelial progenitor cells were -11.7% (control group, n = 16) and

-14.2% (CSL-111, n = 13) without any significant difference between groups (p = 0.98, Fig 2C,

S2 Table). Similarly, no changes in total peripheral leucocyte count (CD45+) were observed

Table 1. Baseline characteristics of the subjects.

Control (n = 17) CSL-111 (n = 16)

Age (years) 55±11 57±9

Male (n (%)) 14 (82) 16 (100)

Weight (kg) 86.5±22.4 90.3±17.5

BMI (kg/m2) 29.4±6.5 29.2±5.0

Diabetes (n (%)) 2 (12) 1 (6)

Hypertension (n (%)) 11 (65) 11 (69)

Current tobacco use (n (%)) 6 (35) 4 (25)

Total cholesterol (mmol/L) 4.7±1.4 4.6±1.0

LDL cholesterol (mmol/L) 2.7±1.1 2.6±0.9

HDL cholesterol (mmol/L) 1.2±0.3 1.2±0.3

Triglycerides (mmol/L) 1.9±0.9 1.8±0.9

Use of lipid lowering medication (n (%)) 15 (88) 15 (94)

Use of inhibitors of the renin-angiotensin system (n (%)) 12 (71) 11 (69)

Prior PCI (n (%)) 10 (59) 13 (81)

Unstable Angina (n (%)) 13 (76) 12 (75)

NSTEMI (n (%)) 2 (12) 3 (19)

STEMI (n (%)) 2 (12) 1 (6)

Values shown are mean±SD for continuous variables or frequencies and percentages for categorical

variables. No statistically significant difference between groups for all the parameters listed. BMI, body mass

index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PCI, percutaneous coronary intervention;

NSTEMI, non ST-elevation myocardial infarction; STEMI, ST-elevation myocardial infarction.

doi:10.1371/journal.pone.0168448.t001
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following rHDL treatment as compared to controls (Figure B in S1 File). Changes of absolute

CD34+ and CD34+/KDR+ endothelial progenitor cell count before and after treatment are

indicated in Fig 2B, 2D, and S2 Table.

We next investigated whether the serum concentrations of cytokines known to be involved

in the mobilisation of vascular progenitor cells such as VEGF and SDF-1 were affected by the

CSL-111 treatment. Although we did not observe differences between the groups in the serum

concentrations of VEGF (data not shown), we found that the median relative change in serum

SDF-1 from baseline was 21.5% in controls and 0.9% in the CSL-111-treated group (Fig 3, S3

Table, p = 0.031).

To further analyze the effects of CSL-111, we next isolated PBMCs from healthy subjects

and assessed the effect of exposing them to CSL-111 during culture and differentiation of

Fig 2. Relative preservation of CD34+ cells in patients with acute coronary syndrome following treatment with reconstituted high-density

lipoprotein (rHDL) compared to controls. The CD34+ progenitor cells (A and B) and CD34+/KDR+ endothelial progenitor cells (C and D) were quantified in

blood samples collected at baseline and at follow-up. The follow-up samples for the CSL-111-treated group were obtained 16 ± 4 days following completion of

the 4 weekly rHDL infusions. Each box plot in A and C shows the median, the interquartile range, the maximum and the minimum of the relative change. B and

D show absolute numbers of CD34+ (B) and CD34+/KDR+ (D) endothelial progenitor cell count at baseline and at follow-up. p < 0.05 between groups (A and

B), p = N.S. (C and D) from Mann-Whitney tests.* one outlier (baseline cell count 1.6/μl, follow-up 0.1/μl) not presented in figure due to axis limits.

doi:10.1371/journal.pone.0168448.g002
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eEPC. Early EPCs were non-treated or treated with CSL-111 (1 mg/mL) either from day 0 to 7,

day 0 to 4, or day 4 to 7. Day 4 is the day when non-adherent cells were washed out and media

was changed in the procedure for eEPC culture. We obtained a median number of total fibro-

nectin-adherent eEPC that was 1.9-fold higher when cells were incubated for 7 days in pres-

ence of CSL-111 than when cells were not exposed to CSL-111 (Fig 4A, S4 Table, p = 0.031). A

similar increase in eEPC was seen when cells were incubated with CSL-111 from day 0 to 4

(p = 0.016 versus untreated cells) whereas eEPC exposure to CSL-111 from day 4 to 7 did

not have a significant effect on the total number of eEPCs when compared to untreated cells.

Similarly, we observed an increase in the median number of CD34+ eEPC when cells were

exposed to CSL-111 during days 0 to 7 (1.5-fold higher) and 0 to 4 (2.1-fold higher) (Fig 4B, S4

Table, p-values 0.031 and 0.016, respectively). We also observed a decrease in the median val-

ues of the percentage of eEPC apoptosis when cells were treated with CSL-111 from days 0 to

7 or 0 to 4 compared to untreated cells (Fig 4C, S4 Table, p-values 0.016 for both treatment

types).

We also characterized the effect of CSL-111 on eEPC migration toward SDF-1 as a chemo-

tactic agent. We observed that cells that were treated with CSL-111 during days 0 to 4 or 0 to 7

had a higher migration capacity toward SDF-1 (Fig 5, S5 Table, p = 0.0003 and 0.0135, respec-

tively) compared to controls, whereas exposure of eEPC from day 4 to 7 did not result in an

increase of migration capacity of the cells compared to control (not exposed to CSL-111)

eEPCs. Western blot analysis of the expression of SDF-1 receptor CXCR4 indicates that CSL-

Fig 3. Decreased levels of serum stromal cell-derived factor-1 (SDF-1) in patients with acute coronary

syndrome following treatment with reconstituted high-density lipoprotein (rHDL) compared to

controls. Relative changes from baseline in serum SDF-1 in the control group and in the rHDL-treated group.

Each box plot shows the median, the interquartile range, the maximum and the minimum. p < 0.05 between

groups from Mann-Whitney test.

doi:10.1371/journal.pone.0168448.g003

rHDL and CD34+ after ACS
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111 increased protein expression of CXCR4 in eEPCs when it was present from day 0 to 4 or 0

to 7 (Figure C and Protocol A in S1 File), similar to migration data.

Discussion

This is the first clinical study exploring short-term effects of intravenous rHDL infusions on

circulating progenitor cell number and function in patients with recent ACS. In line with pre-

vious reports we observed that the number of circulating progenitor cells including CD34+

and CD34+/KDR+ cells increases acutely following an ACS[26,27]. An early decline of EPC

levels or failure to mobilize EPCs from the bone marrow have been described in ACS patients,

Fig 4. In vitro exposure of circulating progenitor cells to CSL-111. Peripheral blood mononuclear cells

(PBMCs) were isolated from healthy donors (n = 7) and plated on fibronectin-coated plates in the absence or

presence of CSL-111 (1 mg/mL) from day 0 to day 4 (D0-4), 4 to 7 (D4-7) or 0 to 7 (D0-7). After 7 days of

culture, adherent cells were harvested and analyzed by flow cytometry. (A) All adherent cells were quantified

by flow cytometry using cell counting beads for enumeration. (B) CSL-111 treatment increases the total

number of CD34+ cells when added to cell culture media at D0-4 and D0-7; CD34+ cells were quantified by

flow cytometry. (C) CSL-111 treatment reduces basal apoptosis in eEPCs when added to cell culture media at

D0-4 and D0-7. Apoptosis was measured by flow cytometry using Annexin V labeling. Each box plot shows

the median, the interquartile range, the maximum and the minimum of the relative change. * indicates

p < 0.05 between groups from Wilcoxon signed-rank tests.

doi:10.1371/journal.pone.0168448.g004

Fig 5. In vitro studies on the effect of CSL-111 on migratory capacity of eEPC. Peripheral blood

mononuclear cells (PBMCs) were isolated from healthy donors (n = 3) and plated on fibronectin-coated plates

in the absence or presence of CSL-111 (1 mg/mL) from day 0 to day 4 (D0-4), 4 to 7 (D4-7) or 0 to 7 (D0-7).

On day 7 of culture, adherent cells were harvested and assayed in a modified Boyden chamber for their

capacity to migrate along an SDF-1 gradient. Significantly increased migration was observed among cells

treated with CSL-111 for day 0 to day 4 (**; p = 0.0003) and 0 to 7 (*; p = 0.0135) compared to controls.

Figure shows adjusted mean±standard error of the mean (SEM). p-values are reported from mixed model

ANOVA.

doi:10.1371/journal.pone.0168448.g005
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which in turn is associated with increased mortality[26,28,29]. We report here that the decline

in progenitor cells can be prevented by four weekly infusions of rHDL (CSL-111), while a sig-

nificant drop of 33% in CD34+ cell count is observed in untreated control patients.

Low progenitor cell numbers following PCI for ACS or stable coronary artery disease are

associated with an increased risk of mortality and recurrent major adverse cardiac events

(MACE), with the risk of MACE being highest during the first six months following the pri-

mary event[4,18,30]. Remarkably, changes in CD34+ progenitor counts in our study popula-

tion were observed after only a short duration of treatment underlining the rapid action of

rHDL on progenitor cell levels. Similarly, beneficial changes in some plaque characteristics

were observed in the ERASE study after only four weeks of rHDL treatment[8]. Thus, the pres-

ent study supports the hypothesis that HDL-raising strategies may exert at least part of their

potentially beneficial effects on plaque morphology via an improvement of circulating bone

marrow-derived progenitor levels[8].

One of the major limitations in studying EPCs is the lack of consensus on the identity of

‘true’ EPCs, which in turn limits the translation of EPC research into clinical studies. The sur-

face marker profile of progenitor cells changes during the process of mobilization and matura-

tion; as they mature, EPCs, a subtype of peripheral blood monocytes that express stem-cell-

like antigens such as CD34, lose the CD133 marker and acquire vascular endothelial growth

factor (VEGF) receptor-2, also known as KDR[31]. Thus, CD34+ cells form a more generic

population of ‘early’ progenitor cells, while CD34+KDR+ cells are committed to the endothelial

lineage[32]. In our study, we detected preserved numbers of CD34+ cells in patients receiving

rHDL infusions, while there was no significant difference in CD34+/KDR+ cells in patients

treated with rHDL compared to controls. However, there is conflicting evidence regarding the

predictive power of CD34+/KDR+ cells in patients with CAD; while some studies have shown

that the number of circulating CD34+/KDR+ cells predicts outcome in healthy individuals and

patients with CAD[33,34], a comparative analysis in patients with ACS reported that the

CD34+/CD133+ phenotype, but not the CD34+/KDR+ or the CD133+/KDR+ phenotype, is pre-

dictive of recurrent ACS or MACE[35]. A pooled analysis from four longitudinal studies, how-

ever, demonstrated that both CD34+ cells and CDR34+/KDR+ cells showed consistent results,

suggesting that there is no clear evidence that one phenotype is superior to the other in terms

of risk prediction[30]. These apparent discrepancies could be attributed to the very low num-

ber of CD34+/KDR+ EPCs in blood samples and the consequential high interobserver variabil-

ity in assessing their quantity, the different methods and time points used to assess EPC in

humans, and the relatively small number of patients in heterogeneous populations assessed

[36]. Furthermore, previous data suggest that CD34+ cell level is more stable over time than

CD34+/KDR+ cell level, which may be more influenced by pharmacological treatment[30,37].

Indeed, in patients with ACS, a reduced number of CD34+ rather than CD34+/KDR+ EPCs

has been shown to be predictive of recurrent ACS[35,38,39,40]. In light of these studies and

our results, one might conclude that CD34+ cells play an important role in the vascular repair

process, particularly in the setting of an acute ischemic event. However, the mechanisms

explaining how rHDL exerts different effects on the two progenitor populations are unclear

and await further studies.

It has been shown previously that the percentage of apoptotic CD34+ progenitor cells is sig-

nificantly increased in patients with ACS as compared to healthy subjects and is associated

with the extent of coronary stenosis by angiography[41]. Thus, functional impairment of pro-

genitor cells through enhanced apoptosis may underlie atherogenesis and cardiovascular

events, while improving survival seems to be vital for neovascularization and arterial injury

repair[42]. In our study, additional experiments using eEPCs isolated from healthy subjects

demonstrated favourable effects of early administration of rHDL on eEPC apoptosis. These
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findings are consistent with the known anti-apoptotic effects of rHDL in another setting[43]

and raise the possibility that early administration would be relevant for maximizing the thera-

peutic benefits of rHDL infusions in ACS patients. We speculate that a reduction in apoptosis

might be one possible mechanism for the relative preservation of CD34+ cell counts following

rHDL infusions. The reduction in apoptosis, seen in our in vitro study, was paralleled by a

higher migration capacity towards SDF-1 in eEPC cell cultures treated with CSL-111. A reduc-

tion in EPC migratory and proliferation capacity was previously observed in patients with

ACS[44] and correlates with increased atherosclerotic load in humans[45]. Therefore, our

findings with eEPCs raise the hypothesis that an increase in progenitor cells level and migra-

tion capability could contribute to favourable effects of rHDL in patients with ACS.

We also measured the circulating concentration of chemokines known to be involved in

EPC recruitment, such as stromal cell-derived factor-1 (SDF-1; also known as CXCL12) and

vascular endothelial growth factor (VEGF). We observed that CSL-111-treated patients had

lower SDF-1 circulating levels than controls; however, this finding is counterbalanced by our

observation of enhanced SDF-1-mediated migration following CSL-111 treatment in vitro. Fur-

ther, there were no differences in VEGF levels between the treatment and control groups. This

is in line with previous observations where no correlation between levels of SDF-1 or VEGF

and numbers of vascular progenitors in patients with ACS were observed[14,16]. Indeed, che-

mokine levels have been shown to undergo rapid changes in experimental models where SDF-1

levels increase sharply 3 days post-MI but go back to normal levels after 1 week[46]. Thus, our

findings could be explained by a reduction of SDF-1 levels that may have occurred through

negative feedback-mechanism as a consequence of better cardiovascular tissue repair due to

improved adhesion of progenitor cells to damaged tissues. Furthermore, the improved migra-

tion capacity observed in cultured eEPC following rHDL treatment may explain why patients

treated with rHDL managed to maintain higher levels of CD34+ progenitor cells despite lower

SDF-1 levels. Interestingly, experimental work suggests that SDF-1 signalling could even be det-

rimental for infarct size and left ventricular function in an ischemia–reperfusion injury model,

due to the recruitment of inflammatory cells and fibrocytes[47]. Thus, based on these conflict-

ing data and the high individual variability of SDF-1 levels observed in clinical studies, it has

been proposed that for progenitor cell homing the local expression of SDF-1 in the heart is

more important than SDF-1 blood levels[14]. Further studies are necessary to clarify and defini-

tively assess the role of SDF-1 signalling in EPC mobilization during ischemia.

There are limitations to our study. Our finding of a potential beneficial effect of rHDL on

progenitor levels and function is limited by a small sample size which led us to enrol additional

control subjects. In addition, our small study population precluded further subgroup analyses

pertaining to the metabolic syndrome and diabetes which are known to be associated with

reduced EPC counts and function[21,48,49]. Prospective studies are required to specifically

evaluate the therapeutic potential of HDL infusions in these subpopulations in the clinical set-

ting of ACS.

In conclusion, we have found that in patients suffering from ACS, rHDL administration

preserves circulating CD34+ levels, possibly via beneficial effects on improved migration and

reduced apoptosis of progenitor cells. Prospective clinical trials are needed to evaluate whether

CD34+ cell count may be a useful biomarker in the evaluation of novel HDL-raising therapies,

particularly those where rHDL or mimetics are involved.
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