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In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor,

Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period

of 3 months. During the same period three harbor porpoises were housed in a marine mammal

facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the

start of the piling activities. As a measure to reduce the sound exposure for the animals an air

bubble curtain was constructed and operated in a direct path between the piling site and the opening

of the animals’ semi-natural pool. The sound attenuation effect achieved with this system was

determined by quantitative comparison of pile driving impulses simultaneously measured in front

of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95

consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and

13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no

further avoidance reactions of the animals to the piling activities were apparent.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3626123]

PACS number(s): 43.50.Gf, 43.80.Nd, 43.50.Pn [JJF] Pages: 3406–3412

I. INTRODUCTION

The diversity and amount of anthropogenic activities at

sea has increased on average over the past decades. Numerous

of these activities are linked to the emission of intense sound

into the marine environment. Intense underwater sound has

been identified as a potential threat especially for fish and ma-

rine mammals. Concern about sound-induced effects on these

taxa was raised especially with regard to the construction of

offshore wind turbines (Tougaard et al., 2003; Madsen et al.,
2006), the use of explosives (see Richardson et al., 1995;

Southall et al., 2007), seismic airguns for marine geophysical

surveys conducted for hydrocarbon exploration [National

Research Council (NRC), 2000, 2005; Gordon et al., 2004)

and military sonars (Richardson et al., 1995; Southall et al.,
2007]. The wider implications of the effects of pile driving

are currently seen in the extensive expansion of near shore

(bridge building) and offshore construction (California

Department of Transportation, 2001; Tougaard et al., 2009).

The acoustic characteristics of marine piling in the case of

offshore wind park developments has received some attention

(Robinson et al., 2007; DeJong and Ainslee, 2008; Matuschek

and Betke, 2009); however, still very little peer-reviewed data

outside of these studies is currently reported on larger pile

diameters (2.5–6 m). Some measurements of piling of smaller

pile diameters used for seabed foundations, harbor construc-

tion, bridge building, etc., have also been carried out. Reyff

(2009) reports measured data for a wide variety of smaller pile

diameters from (0.3–2.4 m) diameter and construction type

including steel sheet, steel pile, and concrete for both impact

hammers and vibratory piling systems. In this case received

levels ranging from 188–220 dB re 1 lPa (peak: maximum

positive or negative observed amplitude) were observed for

impact hammers at a range of 10 m. Sound or vibration com-

ponents generated by impulsive pile driving may also trans-

ferred via substrate and then emerge within the water column

at some distance from the source (Hawkins, 2009).

The strategies commonly implemented to prevent or miti-

gate potential negative effects of sound-producing activities

on the marine environment include spatial and=or temporal

closure of areas, deterrence of species at risk, sound reduction

at the source, or sound attenuation within the sound propaga-

tion path. In this paper we discuss mitigation through sound

attenuation in a specific case of pile driving. This pile driving

described herein was conducted in a harbor in the vicinity of

the Fjord and Bælt (Kerteminde, Denmark) where three har-

bor porpoises (Phocoena phocoena) were housed in an out-

door-pool. The harbor porpoise, is a small odontocete species

inhabiting mainly coastal waters on the northern hemisphere
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with a functional hearing range reaching at least from 0.5 kHz

to 160 kHz (Andersen, 1970; Kastelein et al., 2002). No infor-

mation on the acoustic tolerance of harbor porpoises to impul-

sive sounds was available at this time, but on the basis of data

on other toothed whale species (Finneran et al., 2002, 2005;

Nachtigall et al., 2003, 2004) concern was raised that the ex-

posure to intense pile driving impulses may impair their hear-

ing capabilities. As the harbor porpoises showed strong

avoidance reactions after the start of the piling activities an air

bubble curtain (ABC) was constructed and operated to reduce

the sound exposure for the animals.

Two primary mechanisms play a role in the attenuation of

sound in bubbly water. Air and water have strong impedance

mismatch, with the water-to-air boundary acting therefore as a

near-perfect reflector. Thus, a cloud of bubbles acts as a series of

high-impedance scatterers. For an incident sound field the scat-

tering results in a net reduction of sound intensity along the orig-

inal transmission axis. Second, the incident energy can cause

bubbles to resonate, effectively absorbing energy directly. This

effect depends on the wavelength of the incident energy and the

bubble size. The presence of the bubbles in the water effectively

lowers the sound velocity in this region through reflection,

refraction, and absorption (Mallock, 1910). The attenuation effi-

ciency can be improved by increasing the total amount of air per

unit time released into the water and hence scattering effects.

Air bubbles expand while rising to the surface due to the

decreasing water pressure. They also tend to fuse to larger bub-

bles. Therefore, under normal conditions, an air bubble curtain

(a stream of bubble from a series of closely spaced release points

forming a “wall” or “curtain” of bubble in water column) would

contain bubbles ranging from slowly rising micro-bubbles to

large bubbles of several centimeters in diameter.

Air bubble curtains have already been tested in several

projects (Würsig et al., 2000; California Department of

Transportation, 2001; Reyff, 2003a, 2003b; Vagle, 2003;

Rodkin and Reyff, 2007; Matuschek and Betke, 2009). How-

ever, so far those systems have achieved a wide variation in

attenuation effects and were either extremely expensive

and=or logistically challenging.

The current study represents a similar opportunity to test

the efficacy of an air bubble curtain to reduce impulsive

sound from small diameter wooden piles in a near shore

environment.

II. METHODS

Construction work to replace a harbor wall in Kerteminde

harbor was started in December 2005. A total of 175 piles of

tropical hard wood of 15 m length and 40 cm diameter were

piled into the ground using a 14 kJ gravity pile driver. Up to

430 impacts with an interval of 1.2 to 1.5 s between succes-

sive impacts were needed to drive the individual piles into the

ground at the waters edge. The piling activity was conducted

in the south-western part of the harbor over a period of 3

months on an irregular schedule of typically 4 working days

per week and occasional breaks of up to 2 weeks.

During this time, three harbor porpoises were perma-

nently housed in the “Fjord and Bælt” (F&B) on the northern

side of the harbor (see Fig. 1). Their enclosure is a rectangu-

lar semi-natural outdoor-pool along the fishing harbor of

Kerteminde. Its dimensions are 20 m by 30 m, with an aver-

age depth of 4 m. While the long sides are formed by con-

crete and steel walls, both shorter ends of the enclosure are

separated from the harbor by nets thus providing a perma-

nent water exchange and an unobstructed sound coupling

with the adjacent harbor.

With the piling activity slowly moving upstream, the

distance from the pile driver to the harbor porpoises enclo-

sure increased from 100 m to 175 m. The harbor porpoises

showed strong avoidance reactions after the start of the pil-

ing activities. This involved rapid surfacing, movement to

the far end of enclosure away from the sound source, and an

abnormal resting behavior at the surface at the far end of

their enclosure over several minutes. As a measure to reduce

the sound exposure for the animals an ABC was constructed

and operated in a direct path between the piling site and the

adjacent opening of the animals’ semi-natural pool.

The piling activity was suspended for the duration of the

construction and installation of the ABC system. The system

had a total length of approximately 40 m and was constructed

using 40 mm outer diameter semi-rigid plastic hose (polyvinyl

chloride, 2 mm wall thickness) with 2 mm diameter holes

spaced 100 mm apart along its length. The hose was laid on

the seabed along the eastern side of the porpoise enclosure

(i.e., the side facing the piling site) for 20 m at a depth of 3–

5 m depending on the tide (61 m). A maximum tidal current

of up to 0.5 m=s was measured in the water column at the

eastern side of the animals’ enclosure. Due to this current, a

double-hose design was chosen and the second half of the

hose was doubled back at approximately mid-water (1.5–

3.5 m depth) along the same path. This ensured that air

bubbles formed a more uniform surface in relation to the

incoming sound wave and decreased the effect of dispersion

due to the water currents as the bubbles rise. The doubling of

FIG. 1. Schematic overhead view of Kerteminde harbor with the “Fjord and

Bælt” located on its northern side and the piling activity (indicated by black

dots and dashed arrow) carried out on the southern side. Due to tidal influ-

ence from the Great Belt currents of up to 2 m=s can occur in Kerteminde

harbor. The dotted line indicates the position of the air bubble curtain. The

solid black and gray lines indicate the closed sides of the enclosures, the

dashed lines show the position of the nets.
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the hose also increased the total amount of air available within

the 20 m aperture across the enclosure to form the ABC. A

compressor was used to provide air at a flow rate of 5 m3

min1 at a 5 bar pressure. The compressor was placed approxi-

mately 40 m away in a nearby parking lot and was not

expected to contribute directly to noise in the water column.

An air pressure gradient was found inside the hoses, with

the highest pressure at the lower hose next to the landside

(closest to the compressor), decreasing toward the harbor wall

and lowest at the upper hose at land-side. Due to the folding

back of the hose, this bi-directional gradient led to a relatively

even distribution of air bubbles along the bubble curtain.

Moderately strong currents (0.5 m s�1) were observed at

the position of the ABC system both during flood and ebb

tides. These currents resulted in a larger dispersion of the

bubble field from the lower line and more drifting as the cur-

rent had more time to act on the rising bubbles. The displace-

ment and dispersion of the lower bubble field swung left and

right of the upper field depending on the state of the tide.

An assessment of the bubble field’s state is clearly criti-

cal to any acoustic properties measured. In practice, how-

ever, the field is highly variable in bubble size, shape,

coverage, etc., and depends on input air flow and air pres-

sure, outlet depth, outlet mechanism (lots of small holes or

wider spaced bigger holes), currents, and bubble rise depth.

To inspect the bubble curtain and assess the air bubble field

at various points during acoustic tests, an underwater camera

was deployed within the bubble field. From this it was possi-

ble to observe the overall bubble field coverage. Figure 2

shows a sample of bubble field at the upper hose line.

A. Piling and air bubble curtain noise assessment

Received level measurements of the piling noise on either

side of the bubble curtain were made in the direction of the

piling source at a point of the enclosure closest to piling. Two

identical hydrophones (Reson TC 4033) were deployed 2 m

from either side of the air bubble curtain in a direct line to the

source approximately perpendicular to the air bubble curtain

at 2 m water depth (i.e., approximately mid-water depth,

depending on state of tide). Simultaneous recordings of piling

impulses in front of and behind the bubble curtain were made

using two identical hydrophone and data acquisition systems,

detailed below. The range (110 m) from bubble curtain to pil-

ing source was assessed using a laser range finder.

Measurements were made using calibrated hydrophones

(Reson TC 4033) with additional 30 dB of gain (Etec B1501,

with Butterworth band pass filters from 10 Hz to 180 kHz

with a 12 dB=octave roll off). The signals were recorded

directly to hard disc using a National Instruments DAQ card

6062E at 12 bit resolution and a 320 kHz sample rate and a

custom software package SeaProDAQ (Pavan et al., 2001).

The ambient noise measurements with and without the air

bubble curtain being turned on were made using identical

hydrophone and data acquisition set-ups and positioning

shortly before or after piling events.

B. Behavioral observation

Concurrently to the installation and operation of the

ABC, the harbor porpoises’ behavior was observed during

and after the pile driving period. The method used was a

focal sampling (Altmann, 1974) of all three animals over a

period of 10 min at randomly varied times of the day. The

behavioral data were submitted to statistical analyses (using

a mixed effect model with animal ID as random variable) to

reveal significant changes during the observation period.

III. RESULTS

An example typical simultaneous time domain wave-

forms from a single piling impact with the air bubble curtain

on are shown in Fig. 3 with Fig. 3 (top) showing the received

signal on the outer hydrophone (nearest to the sound source)

and Fig. 3 (bottom) showing equivalent pulse on the inner

hydrophone (on far side of the air bubble curtain). In the

case of the outer hydrophone a received sound pressure level

of 181 dB re 1lPa (peak-peak, i.e., difference between maxi-

mum positive and maximum negative amplitudes) of the

FIG. 2. Upper bubble field of operational air bubble curtain viewed along

hose line. Scale 30 cm from lens.

FIG. 3. Comparison of waveforms of a typical piling signal recorded simul-

taneously inside and outside an air bubble curtain (ABC) at a distance of

110 m from the piling site. The received sound pressure levels and sound

energy are given for both recordings. The hydrophones were positioned at a

2 m distance from the air bubble curtain at a 2 m water depth.
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combined noise of the piling impulse and the air bubble cur-

tain noise was observed with an single impulse SEL of 149

dB re 1lPa2s based on a 90% energy criteria [SEL90, as

explained in Madsen (2005)]. This can be compared with a

received sound pressure level of 166 dB re 1lPa (peak-peak)

and 135 dB re 1lPa2s for peak-peak and SEL respectively

on the inner hydrophone. Over a complete piling sequence

relatively high variations in received levels were observed.

For one sequence of 95 strikes the received level at the outer

hydrophone varied between 168 and 181 dB re 1lPa (peak-

peak) with an SEL90 level between 137 and 149 dB re

1lPa2s. Comparable results were observed on data from

three consecutive pile driving sequences.

Figure 4 shows direct comparison of the difference in

received sound pressure levels from simultaneous recordings

made on both sides of the air bubble curtain for an entire pil-

ing sequence of 95 strikes. The difference in spreading loss

between the outer (closer to pile) and inner hydrophone (fur-

ther from pile) was estimated using a worst case spherical

spreading loss from the ranges 108 m to a 112 m giving a

loss difference of less than 0.32 dB; however, propagation

within the water column from the pile of over 20 water

depths is likely to result in still lower loss difference between

the hydrophone positions due to spreading and was therefore

considered negligible in the attenuation estimates.

For both peak-peak and SEL values a clear reduction

can be seen across the ABC for levels similar to that seen in

the single strike example shown in Fig. 3.

In the case of the continuous sequence shown in Fig. 4

the mean level difference between inside and outside the air

bubble curtain of 14 dB for peak-peak values and 13 dB for

SEL values were observed. The peak-peak values have a

higher standard deviation of 3.4 dB compared to 2.5 dB for

the SEL value across the sequence.

The spectral contents of both piling impulse and of the

air bubble curtain’s self noise were also measured. Figure 5

shows the power spectral density integrated across third

octave bands for a 100 ms time window (chosen to cover the

entire pulse duration as seen at the hydrophone) for five cases

including simultaneous hammer strike on inner and outer

hydrophones, the period of background level just before ham-

mer strikes (approximately 1.5 s after previous strike) on

both inner and outer hydrophones with bubble curtain on and

background level before bubble curtain was activated. In the

time domain the signal (Fig. 3) shows no significant reverber-

ation after around 100 ms after the main signal arrival; there-

fore, consecutive pulses were considered in isolation. The

results in Fig. 5 are presented as spectral density across third

octave band calculated by division of the power spectral level

in that band by the bands spectral width. This was done to

allow direct comparison of broad band bubble noise and am-

bient noise to other broadband spectral density data sets.

A comparison of levels recorded at both hydrophones

with the ABC turned on and off shows significant noise level

increases when no piling occurred. A maximum increase of

45 dB above the background levels (without the air bubble

curtain being activated) was observed around 600 Hz with

levels from 500 Hz and 10 kHz typically 20–30 dB above

background and elevated levels for frequencies up to 50

kHz. The difference in equivalent bubble curtain noise on

the two hydrophones is most likely due to the drift of the

curtain in current flow with both hydrophones were at the

FIG. 4. (top) Difference in peak-peak level

for measurements made in front of (relative

to the sound source) and behind the air bub-

ble curtain (ABC) for 95 consecutive strikes

from a single piling sequence. (bottom)

Equivalent data for difference SEL level

inside and outside the ABC.
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same water depth as the upper air bubble curtain outlet jets

with a range of 2 m.

With the bubble curtain on the level at the outer hydro-

phone increased due to the hammer strike at frequencies

from 400 Hz up to greater than 50 kHz above the equivalent

no-strike noise level. The most dominant frequency content

was seen around 600 Hz, with an equivalent increase of

approximately 20 dB.

By comparison the levels on the inner hydrophone were

10–20 dB lower for frequencies 500–2000 Hz in overall

level compared with the outer hydrophone. With the ABC

turned on no significant hammers strike signal was observed

on the inner hydrophone for frequencies 400–1000 Hz sug-

gesting attenuation of these hammer strike components to

levels below the background noise level of the operational

ABC. The most dominant frequency content observed on the

inner hydrophone above the no-strike background noise was

around 2–6 kHz with a maximum difference of around 12

dB above equivalent noise levels before and during hammer

strike with the air bubble curtain is turned on. The difference

in strike and equivalent noise level was reduced to less than

5 dB for frequencies greater than 10 kHz. All noise measure-

ments were conducted when no boat traffic was in the imme-

diate vicinity under calm conditions without rain.

A. Behavioral reaction

With the onset of the piling activity, the three harbor

porpoises (one adult male, one adult female, and a juvenile

female) in the enclosure immediately displayed strong be-

havioral reactions such as speed swimming and porpoising

for as long as the piling continued. These behaviors were

interpreted as avoidance reactions to the sound exposure as

they had been observed in these animals during exposures to

novel acoustic stimuli before and are similar to flight behav-

ior observed in free ranging animals. These energetically

demanding behaviors were in some cases followed or inter-

rupted by periods when an animal could be observed logging

at the surface at the far end of their enclosure. Due to the

unexpected onset of the piling activity, no quantitative ob-

servation of the animals’ behavior was conducted prior to

this study. However, visual observation of the animals’ over-

all behavior and their breathing rates in particular had been

conducted routinely prior to the onset of pile driving.

Systematic observation of the porpoises revealed no fur-

ther obvious avoidance behavior in response to the ramming

activities or the operation of the air bubble curtain. The only

avoidance reaction observed occurred when the air bubble

curtain was initially activated. This reaction, however, faded

within the first few days whenever the air bubble curtain was

active.

IV. DISCUSSION

The results of the acoustic data analyzed in this study

show that the air bubble curtain can be an effective measure

to mitigate sound-induced effects on marine mammals. The

work presented here resulted as reaction to the commence-

ment of piling activities in Kerteminde harbor, and the air

bubble curtain was constructed with the best available knowl-

edge of its potential attenuation effects. The results presented

show that attenuation of this type of piling noise was achieved

with mean difference between inside and outside curtain of 14

dB for peak-peak and 13 dB for SEL values.

A study on the tolerance of the animals hearing to

intense impulsive sounds revealed that harbor porpoises are

likely to show a temporary threshold shift (TTS) in their

hearing sensitivity at a received sound pressure level above

200 dB (peak-peak) re 1lPa or a received sound energy

above 164 dB re 1lPa2s (Lucke et al., 2009). A reduction in

sound level by 14 dB on average—as achieved with this sys-

tem—would reduce the range of this effect around a sound

source by over 75% and the affected area by over 90%

(assuming spherical spreading with a propagation loss of

20�log(r), with r¼ range in meters).

The effectiveness of such an air bubble system in open

waters based on the results of this study remains difficult to

assess. With stronger currents and greater water depths in

which such a system could possibly be installed the effi-

ciency of the present design may have to be optimized. One

beneficial aspect of the chosen design was the installation of

the bubble curtain near the sound receivers (the animals),

thus avoiding the problem of bottom propagation in this cap-

tive situation to some extent. The transmission of some

sound energy through the bottom may contribute to the

received level at the animals due to reemergence of the

sound back into the water column. This effect of sediment

borne energy on received level in the water column would

potentially be worse if the sound barrier is placed nearer to

the sound source giving more time for the sediment borne

energy to reemerge into the water column.

The porpoises generally resumed normal activity during

piling when the bubble curtain was activated. Porpoising and

FIG. 5. Power spectral density integrated across third octave bands for five

cases: a single received strike on outer hydrophone with air bubble curtain

(ABC) turned on (indicated by circles), the same strike received on inner

hydrophone with air bubble curtain turned on (squares), outer hydrophone

period immediately before hammer strike (approximately 1.5 s after previ-

ous strike) with air bubble curtain turned on (diamonds) d) inner hydrophone

period immediately before hammer strike with air bubble curtain turned on

(stars), and background levels just before the start of piling sequence and the

air bubble curtain turned off (triangles). Total time window used was 100 ms

at a sample rate of 320 kS=s.
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speed swimming, along with an increased breathing rate, as

observed during the initial period of pile driving before the

ABC was constructed, are likely indicators of increased

stress in the animals. No long lasting behavior of this type

was observed after the air bubble curtain was installed. The

null-hypothesis in this context was that the animals behaved

in the same way when pile driving noise was present or

absent and regardless of the air bubble curtain. As no quanti-

tative data exist on the animals’ behavioral response to the

pile driving without the air bubble curtain in operation and

no statistically significant differences were found during the

remaining scenarios (pile driving without operational air

bubble curtain as well as no pile driving with and without air

bubble curtain) these data have to be treated as anecdotal

evidence. Moreover, additional factors such as habituation to

the piling noise over time and reduced sound levels as the

piling moved away from the enclosure could have also influ-

enced the behavior. It also remains unclear to what extent

the behavioral reaction of harbor porpoises held under

human care in a comparatively noisy fishing harbor can be

used as proxies for wild animals. Nevertheless, any attenuat-

ing effect would result in a smaller range around a sound

source in which behavioral reactions would occur. Tougaard

et al. (2003) observed a significant increase in directional

movement of wild harbor porpoises away from a site (Horns

Rev, Denmark) where foundations were driven into the

ground by using impulsive pile driving.

The planned expansion of wind farm developments in

European waters will potentially lead to thousands of wind

turbines being installed over the next decades. This would

increase the percentage of the whole population of harbor

porpoises that could be affected at least once. Moreover, it is

likely that individual animals would be exposed repeatedly

to pile driving sounds. This could occur if the animals return

to the same site and experience the sound emissions from the

installation of the next foundation or move to other areas

where a different wind farm is under construction.

At time of writing there was very little data available for

any marine mammal species on cumulative effects from

repeated exposure to intense sounds. One recent study by

Finneran et al. (2010) confirmed the potential for accumula-

tion for TTS across multiple exposures to 16 s long acoustic

stimuli for bottlenose dolphin (Tursiops truncatus). Similarly

a TTS study in harbor porpoises (Lucke et al., 2009) pro-

vided first data on the recovery time of the animals’ auditory

system after exposure to impulses above its TTS threshold.

This indicates that harbor porpoises need long periods (up to

days) to recover from TTS. Any repeated exposure within

this period would lead to a summation effect and aggravate

the auditory effect. Furthermore, cumulative non-acoustic

effects could potentially also arise from acoustic effects in

conjunction with other environmental stressors such as pol-

lution and food depletion.

The results presented here show that air bubble curtains

can provide the opportunity to reduce acoustically induced

detrimental effects at least to some degree. Any attenuation

effects would help mitigate overall received levels around a

noise source reducing overall impact on the marine

environment.
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