16 research outputs found

    Resonant propagation of x rays from the linear to the nonlinear regime

    Get PDF
    We present a theoretical study of temporal, spectral, and spatial reshaping of intense, ultrafast x-ray pulses propagating through a resonant medium. Our calculations are based on the solution of a three-dimensional time-dependent Schrödinger-Maxwell equation, with the incident x-ray photon energy on resonance with the core-level 1s-3p transition in neon. We study the evolution of the combined incident and medium-generated field, including the effects of stimulated emission, absorption, ionization, and Auger decay, as a function of the input pulse energy and duration. We find that stimulated Raman scattering between core-excited states 1s-13p and 2p-13p occurs at high x-ray intensity, and that the emission around this frequency is strongly enhanced when also including the similar 1s-1-2p-1 response of the ion. We also explore the dependence of x-ray self-induced transparency (SIT) and self-focusing on the pulse intensity and duration, and we find that the stimulated Raman scattering plays an important role in both effects. Finally, we discuss how these nonlinear effects may potentially be exploited as control parameters for pulse properties of x-ray free-electron laser sources

    Complex attosecond waveform synthesis at fel fermi

    Get PDF
    Free-electron lasers (FELs) can produce radiation in the short wavelength range extending from the extreme ultraviolet (XUV) to the X-rays with a few to a few tens of femtoseconds pulse duration. These facilities have enabled significant breakthroughs in the field of atomic, molecular, and optical physics, implementing different schemes based on two-color photoionization mechanisms. In this article, we present the generation of attosecond pulse trains (APTs) at the seeded FEL FERMI using the beating of multiple phase-locked harmonics. We demonstrate the complex attosecond waveform shaping of the generated APTs, exploiting the ability to manipulate independently the amplitudes and the phases of the harmonics. The described generalized attosecond waveform synthesis technique with an arbitrary number of phase-locked harmonics will allow the generation of sub-100 as pulses with programmable electric fields

    Molécules soumises à des impulsions laser intenses et courtes : simulations de dynamiques ultrarapides corrélées

    No full text
    In this thesis we study different aspects of the ultrafast dynamics of atoms and molecules triggered by intense and short infrared laser pulses. Highly non-linear processes like tunnel ionization, high order harmonic generation and above threshold ionization are investigated. Two different and complementary approaches are used. On the one hand we construct approximate analytical models to get physical insight on these processes. On the other hand, these models are supported by the results of accurate numerical simulations that explicitly solve the time dependent Schrödinger equation for simple benchmark models in reduced dimensions. A numerical method based on time dependent configuration interaction is investigated to describe larger and more more complex systems with several electronsCette thèse porte sur différents aspects des dynamiques ultra-rapides d’atomes et de molécules soumises à des impulsions laser infrarouges courtes et intenses. Nous étudions des processus fortement non linéaires tels que l’ionisation tunnel, la génération d’harmoniques d’ordre élevé ou l’ionisation au-dessus du seuil. Deux approches différentes sont utilisées. D’un côté nous mettons au point des modèles analytiques approchés qui nous permettent de construire des interprétations physiques de ces processus. D’autre part nous appuyons les interprétations données par ces modèles avec les résultats obtenus par des simulations numériques qui résolvent explicitement l’équation de Schrödinger dépendante du temps en dimension réduite. Nous étudions également une méthode numérique basée sur l’interaction de configuration dépendante du temps afin de pouvoir des décrire des systèmes à plusieurs électrons plus gros et plus complexes

    Interaction avec un véhicule autonome de niveau 4 : L'impact de l'expertise sur la qualité du comportement visuo-attentionnel durant les secondes précédant la reprise du volant

    No full text
    International audienceIn a very close future, car will drive most of the time in autonomous mode, allowing the drivenger (the people behind the steering wheel) free to do what (s)he wants while being transported from until the Autonomous System (AS) cannot insure any more the driving activity management in complete safety. In this critical case, the system will alert the drivenger few seconds before it will stop its action. Drivenger should then regain behavioral control over the vehicle while it runs on the road. Present study interested in the visual scanning behavior of drivenger while the system manages the simulated driving activity until it let it to the driver. Drivengers are told to watch a movie until the AS asks them to control back over the driving activity. 10 seconds before the end of the road trip, the voice from the AS informed the drivenger to control back the driving activity. A recognition test, at the end of the trip, insured that participants had paid attention to the movie. Results indicate that visual scanning of the driving scene is decreasing over the 30 minutes of road trip in AS condition. Finally, during the critical delay of 10 seconds, (1) only the speedometer and th

    Dialogue on analytical and ab initio methods in attoscience

    Get PDF
    The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' cecam virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience-covering both analytical and numerical methods-and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in 'analytical' techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community

    Dynamical distortions of structural signatures in molecular high-order harmonic spectroscopy

    No full text
    International audienceWe study the signature of two-center interferences in molecular high-order harmonic spectra, with an emphasis on the spectral phase. With the help of both ab initio computations based on the time-dependent Schrödinger equation and the molecular strong-field approximation (SFA) as developed by Chirilȃ et al. [Phys. Rev. A 73, 023410 (2006)] and Faria [Phys. Rev. A 76, 043407 (2007)], we observe that the phase behavior is radically different for the short and the long trajectory contributions. By means of Taylor expansions of the molecular SFA, we link this effect to the dynamics of the electron in the continuum. More precisely, we find that the value of the electric field at recombination time plays a crucial role in the shape of the destructive interference phase jump

    Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    No full text
    Abstract High harmonic spectroscopy gives access to molecular structure with Angström resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrödinger equation, either numerically or with the molecular strong-field approximation, we show that the electron dynamics in the emission process generally results in a strong spectral smoothing of the interferences, blurring the structural information. However we identify specific generation conditions where they are unaffected. These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy

    Optimal Basis Set for Electron Dynamics in Strong Laser Fields: The case of Molecular Ion H 2 +

    Get PDF
    International audienceA clear understanding of the mechanisms that control the electron dynamics in a strong laser field is still a challenge that requires interpretation by advanced theory. Development of accurate theoretical and computational methods, able to provide a precise treatment of the fundamental processes generated in the strong field regime, is therefore crucial. A central aspect is the choice of the basis for the wave function expansion. Accuracy in describing multiphoton processes is strictly related to the intrinsic properties of the basis, such as numerical convergence, computational cost, and representation of the continuum. By explicitly solving the 1D and 3D time-dependent Schrödinger equation for H2+ in the presence of an intense electric field, we explore the numerical performance of using a real-space grid, a B-spline basis, and a Gaussian basis (improved by optimal Gaussian functions for the continuum). We analyze the performance of the three bases for high-harmonic generation and above-threshold ionization for H2+. In particular, for high-harmonic generation, the capability of the basis to reproduce the two-center interference and the hyper-Raman phenomena is investigated
    corecore