10 research outputs found

    gene expression profiling in breast cancer a clinical perspective

    Get PDF
    Gene expression profiling tests are used in an attempt to determine the right treatment for the right person with early-stage breast cancer that may have spread to nearby lymph nodes but not to distant parts of the body. These new diagnostic approaches are designed to spare people who do not need additional treatment (adjuvant therapy) the side effects of unnecessary treatment, and allow people who may benefit from adjuvant therapy to receive it. In the present review we discuss in detail the major diagnostic tests available such as MammaPrint dx, Oncotype dx, PAM50, Mammostrat, IHC4, MapQuant DX, Theros-Breast Cancer Gene Expression Ratio Assay, and their potential clinical applications

    Parkin absence accelerates microtubule aging in dopaminergic neurons

    No full text
    Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell–derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease

    Pure anti-tumor effect of zoledronic acid in na\uefve bone-only metastatic and locally advanced breast cancer: Proof from the "biological window therapy"

    No full text
    The study investigated the anti-tumour effect of zoledronic acid (ZA) administered alone in a biological window therapy in na\uefve bone-only metastatic and locally advanced breast cancer (LABC) patients. 33 patients with LABC (Group 1) and 20 patients with a first diagnosis of bone metastasis only (Group 2) received 4 mg single dose of ZA, 14 days (biological window) before starting any treatment. In Group 1, Ki67, CD34, p53/bcl-2 and caspase 3 expression along with the adenosine triphosphate (ATP) levels and RNA disruption index were evaluated as markers of tumor growth in tumour specimens obtained before and after ZA administration (basal, day 14). In Group 2, the total enumeration of circulating tumour cells (CTCs), and of M30+ve CTCs along with the soluble marker of cell death (M30/M65) were carried-out as markers of tumor dissemination at baseline, at 48 h and day 14th. In Group 1, there was a significant reduction in Ki67, CD34, bcl-2 expression after 14 days ZA based-treatment (p = 0.0032; p = 0.0001, p < 0.00001 respectively). ZA showed a significant increase of RNA disruption (p < 0.0076). In Group 2, we observed a significant reduction of CTCs number after 48 h (p = 0.0012), followed by a significant rebound at 14 days (p = 0.012). The apoptotic CTCs/M30+ve and M65 levels significantly increased under treatment (p = 0.018 and p = 0.039 respectively) after drug administration when compared to the baseline. These results are the first prospective in vivo data showing the direct pure anti-tumour effect (either on the tumour cell or on CTCs) of ZA

    Pure anti-tumor effect of zoledronic acid in naïve bone-only metastatic and locally advanced breast cancer: proof from the "biological window therapy"

    No full text
    The study investigated the anti-tumour effect of zoledronic acid (ZA) administered alone in a biological windowtherapyinna ̈ıvebone-onlymetastaticandlocally advanced breast cancer (LABC) patients. 33 patients with LABC (Group 1) and 20 patients with a first diagnosis of bone metastasis only (Group 2) received 4 mg single dose of ZA, 14 days (biological window) before starting any treatment. In Group 1, Ki67, CD34, p53/bcl-2 and caspase 3 expression along with the adenosine triphosphate (ATP) levels and RNA disruption index were evaluated as markers of tumor growth in tumour specimens obtained before and after ZA administration (basal, day 14). In Group 2, the total enumeration of circulating tumour cells (CTCs), and of M30?ve CTCs along with the soluble marker of cell death (M30/M65) were carried-out as markers of tumor dissemination at baseline, at 48 h and day 14th. In Group 1, there was a significant reduction in Ki67, CD34, bcl-2 expression after 14 days ZA based-treatment (p = 0.0032; p = 0.0001, p &lt; 0.00001 respectively). ZA showed a significant increase of RNA disruption (p &lt; 0.0076). In Group 2, we observed a significant reduction of CTCs number after 48h (p = 0.0012), followed by a significant rebound at 14 days (p = 0.012). The apoptotic CTCs/M30?ve and M65 levels significantly increased under treatment (p = 0.018 and p = 0.039 respectively) after drug administration when compared to the baseline. These results are the first prospective in vivo data showing the direct pure anti-tumour effect (either on the tumour cell or on CTCs) of ZA

    Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial

    Get PDF
    Background: Uncertainty exists about the optimal schedule of adjuvant treatment of breast cancer with aromatase inhibitors and, to our knowledge, no trial has directly compared the three aromatase inhibitors anastrozole, exemestane, and letrozole. We investigated the schedule and type of aromatase inhibitors to be used as adjuvant treatment for hormone receptor-positive early breast cancer. Methods: FATA-GIM3 is a multicentre, open-label, randomised, phase 3 trial of six different treatments in postmenopausal women with hormone receptor-positive early breast cancer. Eligible patients had histologically confirmed invasive hormone receptor-positive breast cancer that had been completely removed by surgery, any pathological tumour size, and axillary nodal status. Key exclusion criteria were hormone replacement therapy, recurrent or metastatic disease, previous treatment with tamoxifen, and another malignancy in the previous 10 years. Patients were randomly assigned in an equal ratio to one of six treatment groups: oral anastrozole (1 mg per day), exemestane (25 mg per day), or letrozole (2·5 mg per day) tablets upfront for 5 years (upfront strategy) or oral tamoxifen (20 mg per day) for 2 years followed by oral administration of one of the three aromatase inhibitors for 3 years (switch strategy). Randomisation was done by a computerised minimisation procedure stratified for oestrogen receptor, progesterone receptor, and HER2 status; previous chemotherapy; and pathological nodal status. Neither the patients nor the physicians were masked to treatment allocation. The primary endpoint was disease-free survival. The minimum cutoff to declare superiority of the upfront strategy over the switch strategy was assumed to be a 2% difference in disease-free survival at 5 years. Primary efficacy analyses were done by intention to treat; safety analyses included all patients for whom at least one safety case report form had been completed. Follow-up is ongoing. This trial is registered with the European Clinical Trials Database, number 2006-004018-42, and ClinicalTrials.gov, number NCT00541086. Findings: Between March 9, 2007, and July 31, 2012, 3697 patients were enrolled into the study. After a median follow-up of 60 months (IQR 46–72), 401 disease-free survival events were reported, including 211 (11%) of 1850 patients allocated to the switch strategy and 190 (10%) of 1847 patients allocated to upfront treatment. 5-year disease-free survival was 88·5% (95% CI 86·7–90·0) with the switch strategy and 89·8% (88·2–91·2) with upfront treatment (hazard ratio 0·89, 95% CI 0·73–1·08; p=0·23). 5-year disease-free survival was 90·0% (95% CI 87·9–91·7) with anastrozole (124 events), 88·0% (85·8–89·9) with exemestane (148 events), and 89·4% (87·3 to 91·1) with letrozole (129 events; p=0·24). No unexpected serious adverse reactions or treatment-related deaths occurred. Musculoskeletal side-effects were the most frequent grade 3–4 events, reported in 130 (7%) of 1761 patients who received the switch strategy and 128 (7%) of 1766 patients who received upfront treatment. Grade 1 musculoskeletal events were more frequent with the upfront schedule than with the switch schedule (924 [52%] of 1766 patients vs 745 [42%] of 1761 patients). All other grade 3–4 adverse events occurred in less than 2% of patients in either group. Interpretation: 5 years of treatment with aromatase inhibitors was not superior to 2 years of tamoxifen followed by 3 years of aromatase inhibitors. None of the three aromatase inhibitors was superior to the others in terms of efficacy. Therefore, patient preference, tolerability, and financial constraints should be considered when deciding the optimal treatment approach in this setting. Funding: Italian Drug Agency

    Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial

    No full text
    corecore