9 research outputs found
Early post-treatment MRI predicts long-term hepatocellular carcinoma response to radiation segmentectomy
OBJECTIVES
Radiation segmentectomy using yttrium-90 plays an emerging role in the management of early-stage HCC. However, the value of early post-treatment MRI for response assessment is uncertain. We assessed the value of response criteria obtained early after radiation segmentectomy in predicting long-term response in patients with HCC.
MATERIALS AND METHODS
Patients with HCC who underwent contrast-enhanced MRI before, early, and 12 months after radiation segmentectomy were included in this retrospective single-center study. Three independent radiologists reviewed images at baseline and 1 follow-up after radiation segmentectomy and assessed lesion-based response according to mRECIST, LI-RADS treatment response algorithm (TRA), and image subtraction. The endpoint was response at 12 months based on consensus readout of two separate radiologists. Diagnostic accuracy for predicting complete response (CR) at 12 months based on the 1 post-treatment MRI was calculated.
RESULTS
Eighty patients (M/F 60/20, mean age 67.7 years) with 80 HCCs were assessed (median size baseline, 1.8 cm [IQR, 1.4-2.9 cm]). At 12 months, 74 patients were classified as CR (92.5%), 5 as partial response (6.3%), and 1 as progressive disease (1.2%). Diagnostic accuracy for predicting CR was fair to good for all readers with excellent positive predictive value (PPV): mRECIST (range between 3 readers, accuracy: 0.763-0.825, PPV: 0.966-1), LI-RADS TRA (accuracy: 0.700-0.825, PPV: 0.983-1), and subtraction (accuracy: 0.775-0.825, PPV: 0.967-1), with no difference in accuracy between criteria (p range 0.053 to > 0.9).
CONCLUSION
mRECIST, LI-RADS TRA, and subtraction obtained on early post-treatment MRI show similar performance for predicting long-term response in patients with HCC treated with radiation segmentectomy.
CLINICAL RELEVANCE STATEMENT
Response assessment extracted from early post-treatment MRI after radiation segmentectomy predicts complete response in patients with HCC with high PPV (≥ 0.96).
KEY POINTS
• Early post-treatment response assessment on MRI predicts response in patients with HCC treated with radiation segmentectomy with fair to good accuracy and excellent positive predictive value. • There was no difference in diagnostic accuracy between mRECIST, LI-RADS, and subtraction for predicting HCC response to radiation segmentectomy
Quantitative chest computed tomography combined with plasma cytokines predict outcomes in COVID-19 patients
Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest computed tomography (CT) in combination with plasma cytokines using a machine learning and k-fold cross-validation approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n = 152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within five days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α), were collected from the electronic medical record. We found that CT quantitative alone was better at predicting severity (AUC 0.81) than death (AUC 0.70), while cytokine measurements alone better-predicted death (AUC 0.70) compared to severity (AUC 0.66). When combined, chest CT and plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82). Finally, we provide a simple scoring system (nomogram) using plasma IL-6, IL-8, TNF-α, ground-glass opacities (GGO) to aerated lung ratio and age as new metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Precision of MRI radiomics features in the liver and hepatocellular carcinoma
OBJECTIVES
To assess the precision of MRI radiomics features in hepatocellular carcinoma (HCC) tumors and liver parenchyma.
METHODS
The study population consisted of 55 patients, including 16 with untreated HCCs, who underwent two repeat contrast-enhanced abdominal MRI exams within 1 month to evaluate: (1) test-retest repeatability using the same MRI system (n = 28, 10 HCCs); (2) inter-platform reproducibility between different MRI systems (n = 27, 6 HCCs); (3) inter-observer reproducibility (n = 16, 16 HCCs). Shape and 1st- and 2nd-order radiomics features were quantified on pre-contrast T1-weighted imaging (WI), T1WI portal venous phase (pvp), T2WI, and ADC (apparent diffusion coefficient), on liver regions of interest (ROIs) and HCC volumes of interest (VOIs). Precision was assessed by calculating intraclass correlation coefficient (ICC), concordance correlation coefficient (CCC), and coefficient of variation (CV).
RESULTS
There was moderate to excellent test-retest repeatability of shape and 1st- and 2nd-order features for all sequences in HCCs (ICC: 0.53-0.99; CV: 3-29%), and moderate to good test-retest repeatability of 1st- and 2nd-order features for T1WI sequences, and 2nd-order features for T2WI in the liver (ICC: 0.53-0.73; CV: 12-19%). There was poor inter-platform reproducibility for all features and sequences, except for shape and 1st-order features on T1WI in HCCs (CCC: 0.58-0.99; CV: 3-15%). Good to excellent inter-observer reproducibility was found for all features and sequences in HCCs (CCC: 0.80-0.99; CV: 4-15%) and moderate to good for liver (CCC: 0.45-0.86; CV: 6-25%).
CONCLUSIONS
MRI radiomics features have acceptable repeatability in the liver and HCC when using the same MRI system and across readers but have low reproducibility across MR systems, except for shape and 1st-order features on T1WI. Data must be interpreted with caution when performing multiplatform radiomics studies.
KEY POINTS
• MRI radiomics features have acceptable repeatability when using the same MRI system but less reproducible when using different MRI platforms. • MRI radiomics features extracted from T1 weighted-imaging show greater stability across exams than T2 weighted-imaging and ADC. • Inter-observer reproducibility of MRI radiomics features was found to be good in HCC tumors and acceptable in liver parenchyma
Luminal Narrowing Alone Allows an Accurate Diagnosis of Crohn's Disease Small Bowel Strictures at Cross-Sectional Imaging
BACKGROUND AND AIMS
Current consensus recommendations define small bowel strictures [SBS] in Crohn's disease [CD] on imaging as luminal narrowing with unequivocal upstream bowel dilation. The aim of this study was to [1] evaluate the performance of cross-sectional imaging for SBS diagnosis in CD using luminal narrowing with upstream SB dilation and luminal narrowing with or without upstream dilation, and [2] compare the diagnostic performance of computed tomography [CT] and magnetic resonance enterography [MRE] for SBS diagnosis.
METHODS
In total, 111 CD patients [81 with pathologically confirmed SBS, 30 controls] who underwent CT and/or MRE were assessed. Two radiologists [R1, R2] blinded to pathology findings independently assessed the presence of luminal narrowing and upstream SB dilation. Statistical analysis was performed for [1] luminal narrowing with or without SB upstream dilation ['possible SBS'], and [2] luminal narrowing with upstream SB dilation ≥3 cm ['definite SBS'].
RESULTS
Sensitivity for detecting SBS was significantly higher using 'possible SBS' [R1, 82.1%; R2, 77.9%] compared to 'definite SBS' [R1, 62.1%; R2, 65.3%; p 0.9]. Using the criterion 'possible SBS', sensitivity/specificity were equivalent between CT [R1, 87.3%/93.3%; R2, 83.6%/86.7%] and MRE [R1, 75.0%/100%; R2: 70.0%/100%]. Using the criterion 'definite SBS', CT showed significantly higher sensitivity [78.2%] compared to MRE [40.0%] for R1 but not R2 with similar specificities [CT, 86.7-93.3%; MRE, 100%].
CONCLUSION
SBS can be diagnosed using luminal narrowing alone without the need for upstream dilation. CT and MRE show similar diagnostic performance for SBS diagnosis using luminal narrowing with or without upstream dilation
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic