93 research outputs found

    Survey of Canine Dirofilaria immitis Infection in New Caledonia

    Get PDF
    Canine dirofilariosis is a frequent parasitic disease in New-Caledonia. A survey of canine heartworm (Dirofilaria immitis) infection among dogs from the cities of Tontouta, Nandaï and Nouméa, was performed in March 2009 using two antigen test kits; the microwell ELISA test: DiroCHE (Synbiotics Europe) and the Rapid Immuno Migration (RIM) test: WITNESS DIROFILARIA (Synbiotics Europe). Blood samples were collected from 64 dogs: 49 strays and 15 military working dogs. The military dogs received a permanent chemoprophylaxis (moxidectin). In 11 stray dogs, both tests were positive (22.4%). All the military dogs were negative, showing efficiency of chemoprophaxis. Results were discrepant in 6 dogs, negative with one test and doubtful with the other. Antigen heartworm test kits are available and reliable diagnostic tools. They are useful to evaluate the efficiency of chemoprophylaxis and to detect infected animals in order to treat them and to prevent the spreading of the disease

    Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    No full text
    International audienceDigital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed setup (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative accuracy of 0.13 % (for a 30 µm diameter droplet) for droplet size estimation, and a tracking accuracy of σ x × σ y × σ z = 0.15 × 0.15 × 1 pixels

    Towards an experimental von Karman dynamo: numerical studies for an optimized design

    Get PDF
    Numerical studies of a kinematic dynamo based on von Karman type flows between two counterrotating disks in a finite cylinder are reported. The flow has been optimized using a water model experiment, varying the driving impellers configuration. A solution leading to dynamo action for the mean flow has been found. This solution may be achieved in VKS2, the new sodium experiment to be performed in Cadarache, France. The optimization process is described and discussed, then the effects of adding a stationary conducting layer around the flow on the threshold, on the shape of the neutral mode and on the magnetic energy balance are studied. Finally, the possible processes involved into kinematic dynamo action in a von Karman flow are reviewed and discussed. Among the possible processes we highlight the joint effect of the boundary-layer radial velocity shear and of the Ohmic dissipation localized at the flow/outer-shell boundary

    Statistical properties of driven Magnetohydrodynamic turbulence in three dimensions: Novel universality

    Full text link
    We analyse the universal properties of nonequilibrium steady states of driven Magnetohydrodynamic (MHD) turbulence in three dimensions (3d). We elucidate the dependence of various phenomenologically important dimensionless constants on the symmetries of the two-point correlation functions. We, for the first time, also suggest the intriguing possibility of multiscaling universality class varying continuously with certain dimensionless parameters. The experimental and theoretical implications of our results are discussed.Comment: To appear in Europhys. Lett. (2004

    Dynamo action at low magnetic Prandtl numbers: mean flow vs. fully turbulent motion

    Get PDF
    We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the induction equations are jointly solved. The kinematic instability is found to have two branches, for all explored Reynolds numbers. The dynamical dynamo threshold follows these branches: at low Reynolds number it lies within the low branch while at high kinetic Reynolds number it is close to the high branch.Comment: 4 pages, 4 figure

    Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium

    Get PDF
    We report the observation of dynamo action in the VKS experiment, i.e., the generation of magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic field of order 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure

    An hydrodynamic shear instability in stratified disks

    Full text link
    We discuss the possibility that astrophysical accretion disks are dynamically unstable to non-axisymmetric disturbances with characteristic scales much smaller than the vertical scale height. The instability is studied using three methods: one based on the energy integral, which allows the determination of a sufficient condition of stability, one using a WKB approach, which allows the determination of the necessary and sufficient condition for instability and a last one by numerical solution. This linear instability occurs in any inviscid stably stratified differential rotating fluid for rigid, stress-free or periodic boundary conditions, provided the angular velocity Ω\Omega decreases outwards with radius rr. At not too small stratification, its growth rate is a fraction of Ω\Omega. The influence of viscous dissipation and thermal diffusivity on the instability is studied numerically, with emphasis on the case when dlnΩ/dlnr=3/2d \ln \Omega / d \ln r =-3/2 (Keplerian case). Strong stratification and large diffusivity are found to have a stabilizing effect. The corresponding critical stratification and Reynolds number for the onset of the instability in a typical disk are derived. We propose that the spontaneous generation of these linear modes is the source of turbulence in disks, especially in weakly ionized disks.Comment: 19 pages, 13 figures, to appear in A&

    MHD in von Kármán swirling flows, development and first run of the sodium experiment

    Get PDF
    URL: http://www-spht.cea.fr/articles/s01/004 MHD dans les écoulements de von Kármán | Collaboration VKSNATO Science Series II 26, 35-50 (2001). NATO Advanced Research Workshop, Dynamo and Dynamics, A Mathematical ChallengeWe describe the motivations, development and first run of the Von Kármán Sodium (VKS) experiment built to study high Reynolds number magnetohydrodynamics and applications to the dynamo effect. The flow is optimized using water experiments at scale 1/2 and kinematic dynamo simulations. In VKS run1, induction measurements are made in the presence of an externally applied field. Results are reported concerning the geometry of the induced field and its fluctuations in time

    Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence

    Get PDF
    We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 102431024^3 collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number PrM{\rm Pr_M} over a large range, namely, 0.01PrM100.01 \leq {\rm Pr_M} \leq 10. We obtain data for a wide variety of statistical measures such as probability distribution functions (PDFs) of moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterise intermittency, isosurfaces of quantities such as the moduli of the vorticity and current, and joint PDFs such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from larger intermittency in the magnetic field than in the velocity field, at large PrM{\rm Pr_M}, to smaller intermittency in the magnetic field than in the velocity field, at low PrM{\rm Pr_M}. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of PrM{\rm Pr_M}, multiscaling exponent ratios agree, at least within our errorbars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.Comment: 49 pages,33 figure
    corecore