1,308 research outputs found
The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36
We measured the system-integrated thermal emission of the binary Kuiper Belt
Object 1999 TC36 at wavelengths near 24 and 70 microns using the Spitzer space
telescope. We fit these data and the visual magnitude using both the Standard
Thermal Model and thermophysical models. We find that the effective diameter of
the binary is 405 km, with a range of 350 -- 470 km, and the effective visible
geometric albedo for the system is 0.079 with a range of 0.055 -- 0.11. The
binary orbit, magnitude contrast between the components, and system mass have
been determined from HST data (Margot et al., 2004; 2005a; 2005b). Our
effective diameter, combined with that system mass, indicate an average density
for the objects of 0.5 g/cm3, with a range 0.3 -- 0.8 g/cm3. This density is
low compared to that of materials expected to be abundant in solid bodies in
the trans-Neptunian region, requiring 50 -- 75% of the interior of 1999 TC36 be
taken up by void space. This conclusion is not greatly affected if 1999 TC36 is
``differentiated'' (in the sense of having either a rocky or just a non-porous
core). If the primary is itself a binary, the average density of that
(hypothetical) triple system would be in the range 0.4 -- 1.1 g/cm3, with a
porosity in the range 15 -- 70%.Comment: ApJ, in press (May, 2006
A Data-Taking System for Planetary Radar Applications
Most planetary radar applications require recording of complex voltages at
sampling rates of up to 20 MHz. I describe the design and implementation of a
sampling system that has been installed at the Arecibo Observatory, Goldstone
Solar System Radar, and Green Bank Telescope. After many years of operation,
these data-taking systems have enabled the acquisition of hundreds of data
sets, many of which still await publication.Comment: 6 pages, 2 figures, Journal of Astronomical Instrumentatio
Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves
We show that candidate contact binary asteroids can be efficiently identified
from sparsely sampled photometry taken at phase angles >60deg. At high phase
angle, close/contact binary systems produce distinctive lightcurves that spend
most of the time at maximum or minimum (typically >1mag apart) brightness with
relatively fast transitions between the two. This means that a few (~5) sparse
observations will suffice to measure the large range of variation and identify
candidate contact binary systems. This finding can be used in the context of
all-sky surveys to constrain the fraction of contact binary near-Earth objects.
High phase angle lightcurve data can also reveal the absolute sense of the
spin.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in ApJ
Mass and density of B-type asteroid (702) Alauda
Observations with the adaptive optics system on the Very Large Telescope
reveal that outer main belt asteroid (702) Alauda has a small satellite with
primary to secondary diameter ratio of 56. The secondary revolves around
the primary in 4.9143 0.007 days at a distance of 1227 24 km,
yielding a total system mass of (6.057 0.36) 10 kg.
Combined with an IRAS size measurement, our data yield a bulk density for this
B-type asteroid of 1570 500 kg~m.Comment: In press, ApJ 2011. 6 pages, 4 figure
The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients
Predicting chronic graft failure in renal transplant recipients (RTR) is an unmet clinical need. Chronic graft failure is often accompanied by transplant vasculopathy, the formation of de novo atherosclerosis in the transplanted kidney. Therefore, we determined whether the 10-year Framingham risk score (FRS), an established atherosclerotic cardiovascular disease prediction module, is associated with chronic graft failure in RTR. In this prospective longitudinal study, 600 well-characterised RTR were followed for 10 years. The association with death-censored chronic graft failure (n = 81, 13.5%) was computed. An extended Cox model showed that each one percent increase of the FRS significantly increased the risk of chronic graft failure by 4% (HR: 1.04, p < 0.001). This association remained significant after adjustment for potential confounders, including eGFR (HR: 1.03, p = 0.014). Adding the FRS to eGFR resulted in a higher AUC in a receiver operating curve (AUC = 0.79, p < 0.001) than eGFR alone (AUC = 0.75, p < 0.001), and an improvement in the model likelihood ratio statistic (67.60 to 88.39, p < 0.001). These results suggest that a combination of the FRS and eGFR improves risk prediction. The easy to determine and widely available FRS has clinical potential to predict chronic graft failure in RTR.</p
Destructive Physical Analysis of Flight- and Ground-Tested Sodium-Sulfur Cells
Destructive physical analysis (DPA) was used to study the effects of microgravity on the sulfur electrode in sodium-sulfur cells. The cells examined in this work were provided by the Air Force Research Laboratory (AFRL) from their program on sodium-sulfur technology. The Naval Research Laboratory (NRL) provided electrical characterization of the flight-tested and ground-tested cells
Proteoglycan binding as proatherogenic function metric of apoB-containing lipoproteins and chronic kidney graft failure
Lipoprotein-proteoglycan binding is an early key event in atherosclerotic lesion formation and thus conceivably could play a major role in vasculopathy-driven chronic graft failure and cardiovascular mortality in renal transplant recipients. The present study investigated whether lipoproteinproteoglycan binding susceptibility (LPBS) of apoBcontaining lipoproteins and levels of the classical atherosclerosis biomarker LDL-C were associated with cardiovascular mortality (n = 130) and graft failure (n = 73) in 589 renal transplant recipients who were followed up from at least 1 year after transplantation for 9.5 years. At baseline, LPBS was significantly higher in patients who subsequently developed graft failure than in those with a surviving graft (1.68 +/- 0.93 vs. 1.46 +/- 0.49 nmol/mmol, P = 0.001). Cox regression analysis showed an association between LPBS and chronic graft failure in an age-and sex-adjusted model (hazard ratio: 1.45; 95% CI, 1.14-1.85; P = 0.002), but no association was observed with cardiovascular mortality. LDL-C levels were not associated with graft failure or cardiovascular mortality. This study shows that measurement of cholesterol retention outperformed the traditionally used quantitative parameter of LDL-C levels in predicting graft failure, suggesting a higher relevance of proatherogenic function than the quantity of apoBcontaining lipoproteins in chronic kidney graft failure.Peer reviewe
Relationship between Yeast Polyribosomes and Upf Proteins Required for Nonsense mRNA Decay
In yeast, the accelerated rate of decay of nonsense mutant mRNAs, called nonsense-mediated mRNA decay, requires three proteins, Upf1p, Upf2p, and Upf3p. Single, double, and triple disruptions of the UPF genes had nearly identical effects on nonsense mRNA accumulation, suggesting that the encoded proteins function in a common pathway. We examined the distribution of epitope-tagged versions of Upf proteins by sucrose density gradient fractionation of soluble lysates and found that all three proteins co-distributed with 80 S ribosomal particles and polyribosomes. Treatment of ly-sates with RNase A caused a coincident collapse of polyribosomes and each Upf protein into frac-tions containing 80 S ribosomal particles, as expected for proteins that are associated with polyribosomes. Mutations in the cysteine-rich (zinc finger) and RNA helicase domains of Upf1p caused loss of function, but the mutant proteins remained polyribosome-associated. Density gradi-ent profiles for Upf1p were unchanged in the absence of Upf3p, and although similar, were modestly shifted to fractions lighter than those containing polyribosomes in the absence of Upf2p. Upf2p shifted toward heavier polyribosome fractions in the absence of Upf1p and into fractions containing 80 S particles and lighter fractions in the absence of Upf3p. Our results suggest that the association of Upf2p with polyribosomes typically found in a wild-type strain depends on the presence and opposing effects of Upf1p and Upf3p
Relationship between Yeast Polyribosomes and Upf Proteins Required for Nonsense mRNA Decay
In yeast, the accelerated rate of decay of nonsense mutant mRNAs, called nonsense-mediated mRNA decay, requires three proteins, Upf1p, Upf2p, and Upf3p. Single, double, and triple disruptions of the UPF genes had nearly identical effects on nonsense mRNA accumulation, suggesting that the encoded proteins function in a common pathway. We examined the distribution of epitope-tagged versions of Upf proteins by sucrose density gradient fractionation of soluble lysates and found that all three proteins co-distributed with 80 S ribosomal particles and polyribosomes. Treatment of ly-sates with RNase A caused a coincident collapse of polyribosomes and each Upf protein into frac-tions containing 80 S ribosomal particles, as expected for proteins that are associated with polyribosomes. Mutations in the cysteine-rich (zinc finger) and RNA helicase domains of Upf1p caused loss of function, but the mutant proteins remained polyribosome-associated. Density gradi-ent profiles for Upf1p were unchanged in the absence of Upf3p, and although similar, were modestly shifted to fractions lighter than those containing polyribosomes in the absence of Upf2p. Upf2p shifted toward heavier polyribosome fractions in the absence of Upf1p and into fractions containing 80 S particles and lighter fractions in the absence of Upf3p. Our results suggest that the association of Upf2p with polyribosomes typically found in a wild-type strain depends on the presence and opposing effects of Upf1p and Upf3p
- …