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Abstract 
In yeast, the accelerated rate of decay of nonsense mutant mRNAs, called nonsense-mediated mRNA 
decay, requires three proteins, Upf1p, Upf2p, and Upf3p. Single, double, and triple disruptions of 
the UPF genes had nearly identical effects on nonsense mRNA accumulation, suggesting that the 
encoded proteins function in a common pathway. We examined the distribution of epitope-tagged 
versions of Upf proteins by sucrose density gradient fractionation of soluble lysates and found that 
all three proteins co-distributed with 80 S ribosomal particles and polyribosomes. Treatment of ly-
sates with RNase A caused a coincident collapse of polyribosomes and each Upf protein into frac-
tions containing 80 S ribosomal particles, as expected for proteins that are associated with 
polyribosomes. Mutations in the cysteine-rich (zinc finger) and RNA helicase domains of Upf1p 
caused loss of function, but the mutant proteins remained polyribosome-associated. Density gradi-
ent profiles for Upf1p were unchanged in the absence of Upf3p, and although similar, were modestly 
shifted to fractions lighter than those containing polyribosomes in the absence of Upf2p. Upf2p 
shifted toward heavier polyribosome fractions in the absence of Upf1p and into fractions containing 
80 S particles and lighter fractions in the absence of Upf3p. Our results suggest that the association 
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of Upf2p with polyribosomes typically found in a wild-type strain depends on the presence and 
opposing effects of Upf1p and Upf3p. 
 
The notion of a global pathway for eukaryotic mRNA decay suggested by early work in 
animal cells has recently been greatly advanced by studies in the yeast Saccharomyces cere-
visiae (1–4). Using an in vivo transcriptional pulse, the temporal fate of newly synthesized 
mRNA was established by monitoring poly(A) tail length, loss of the m7Gppp cap, disap-
pearance of the mRNA, and the appearance of degradation intermediates. mRNAs with 
shorter half-lives were generally subject to faster rates of deadenylation and decapping. 
Once the poly(A) tails were reduced to a short oligo(A) length (10–12 nucleotides), the 
mRNAs were decapped and digested from the 5′ end. Decapping requires Dcp1p (5). Pro-
cessive degradation from the 5′ end requires the product of the XRN1 gene, which is 
known to encode a 5′3′ exoribonuclease (6). Deadenylation-dependent decapping fol-
lowed by 5′3′ exonucleolytic decay is likely to be the global default pathway for the deg-
radation of most eukaryotic mRNAs. 

Yeast mRNAs containing a premature stop codon decay more rapidly than their wild-
type counterparts (7). This accelerated decay, called nonsense-mediated mRNA decay 
(NMD),1 requires cis-acting elements in the mRNA in addition to a premature stop codon 
(8). Premature translational termination triggers decapping at the 5′ end of nonsense 
mRNAs with kinetics that are independent of deadenylation (9). Following decapping, de-
cay proceeds through the Xrn1p-mediated nucleolysis that is common to intrinsic decay. 
These results support the view that when translation is prematurely terminated, the decay 
of nonsense mRNA is accelerated in part through bypass of a major rate-determining step 
in the default pathway. This defines NMD as a deadenylation-independent decay path-
way. 

Three genes, called UPF1, UPF2, and UPF3, encode protein products that are required 
for NMD in S. cerevisiae (10–13). Loss of function of any one of the three genes stabilizes 
nonsense mRNAs. All three UPF genes have been identified, characterized, and se-
quenced. UPF1 codes for a 109-kDa protein that contains a cysteine-rich region and an 
ATPase-helicase domain (10). Purified Upf1p has 5′3′ RNA/DNA helicase activities and 
a nucleic acid-dependent ATPase activity (14). Upf1p localizes to the cytoplasm, and the 
majority of soluble Upf1p is associated with polyribosomes (15). UPF2 encodes a 126-kDa 
protein that has a putative nuclear localization sequence and has been implicated in the 
performance of at least one function in the cytoplasm (11, 12). UPF3, which encodes a pre-
dominantly nuclear 45-kDa protein (10, 13), contains multiple sequence elements that have 
recently been shown to promote nuclear import and export across the nuclear envelope.2 
Mutations in Upf3p that are defective for nuclear export confer an Nmd– phenotype, sug-
gesting that export is connected with the function of Upf3p in NMD. 

Physical interactions between the Upf proteins have been studied using the two-hybrid 
system of Fields and Song (16). A two-hybrid interaction was first detected when UPF2 
was recovered using DNA coding for Upf1p as bait (12). When all possible combinations 
of the three UPF genes were tested for interaction, β-galactosidase activities indicative of 
strong interactions were detected with the combinations UPF1-UPF2 and UPF2-UPF3. 
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However, much lower β-galactosidase activity indicative of a weak interaction was re-
vealed when UPF1 and UPF3 were combined in two-hybrid test plasmids (17). Genetic 
evidence was provided suggesting that this weak interaction is indirect and is most likely 
mediated through Upf2p, which could serve as a bridge between the two proteins. In ad-
dition to these interactions, import and export of Upf3p across the nuclear envelope pre-
sumably requires docking to nucleoporin receptors that facilitate protein transport 
through nuclear pores.2 Taken together, these findings suggest that nuclear and cytoplas-
mic steps in NMD exist that are functionally linked through interactions between the Upf 
proteins and the nucleoporins that direct traffic across the nuclear envelope. 

In this paper, we have extended our knowledge of the relationships between the Upf 
proteins using genetic analysis, cell fractionation, and sucrose density gradient fractiona-
tion. Single, double, and triple disruptions of the three UPF genes confer nonadditive ef-
fects on nonsense mRNA accumulation, suggesting that the three proteins act in a common 
mRNA decay pathway. By analyzing soluble lysates using sucrose density gradient frac-
tionation, we find that Upf1p, Upf2p, and Upf3p all associate with 80 S ribosomal particles 
and polyribosomes. Mutations in the zinc finger and RNA helicase domains of Upf1p were 
also analyzed and found to diminish the function of Upf1p in NMD without diminishing 
the ability of the mutant proteins to associate with polyribosomes. In addition, UPF gene 
disruptions were used to assess whether the typical distribution of Upf1p and Upf2p in 
sucrose gradients depends on the presence of the other proteins. Our results suggest that 
the normal association of Upf2p with polyribosomes depends on the presence and oppos-
ing effects of the other two proteins. Also, we report that quantitative measurements of the 
relative cellular protein concentrations of Upf1p and Upf3p indicate a lack of 1:1 stoichi-
ometry. The implications of these findings are discussed in the context of the cellular dis-
tribution, physical interactions, and functional relationships between the three proteins. 
 
Experimental Procedures 
 
Strains, Plasmids, and Genetic Methods 
Strains of S. cerevisiae and plasmids are listed in Tables I and II, respectively. Yeast strains 
were constructed, grown, and maintained using standard techniques (18). Yeast transfor-
mations were performed using the LiAc method (19) or by electroporation (20). Escherichia 
coli strain DH5α was used for preparation of plasmid DNAs. Methods for growth, mainte-
nance, and transformation of bacteria are described by Sambrook et al. (21). Plasmid DNAs 
were prepared from E. coli using a QIAprep spin plasmid miniprep kit (Qiagen Inc., Chats-
worth, CA) or by the method of Lee and Rasheed (22). 

To test the effects of multiple UPF gene disruptions on nonsense mRNA accumulation, 
strain LRSY307 (Table I) was constructed. LRSY307 carries three marked disruption alleles, 
upf1::ura32, upf2::HIS3, and upf3::TRP1. Wild-type UPF1, UPF2, or UPF3 genes were trans-
formed into LRSY307 in all possible combinations on URA3 CEN6 or LEU2 CEN6 plasmids 
(Table II), resulting in an isogenic set of strains that collectively represent all possible sin-
gle, double, and triple disruptions. To measure the effects of the upf1–3 and UPF1-D4 mu-
tations on NMD, isogenic strains were constructed using strain PLY38 (Table I). PLY38 
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contains upf1–2, which confers complete loss of function (10). Plasmids carrying upf1–3 and 
UPF1-D4 were transformed into PLY38 on URA3 CEN6 plasmids (Table II). 
 

Table I. Yeast strains 
Strain Genotype 

AAY181 MATa upf1-Δ1::URA3 upf3-Δ1::TRP1 ura3–52 trp1–7 leu2–3,112 
LRSY21 MATα his4–38 SUF1–1 ura3–52 upf2–1 
LRSY203 MATα trp1-Δ1 his4–38 SUF1–1 upf3-Δ1::TRP1 ura3–52 leu2–3 
LRSY307 MATa his3–11,15 ura3–52 trp1-Δ1 leu2 upf1-Δ2::ura3-upf2-Δ1::HIS3 upf3-Δ1::TRP1 
JDY8 MATα leu2–3,112 trp1-Δ1 ura3–52 his3–11,-15 upf2-Δ1::HIS3 
PLY102 MATa upf1-Δ1::URA3 ura3–52 trp1–7 leu2–3,112 
PLY38 MAT upf1–2 his4–38 SUF1–1 ura3–52 
YJP121 MATa ura3–52 lys2–801 ade2–101 his3-Δ200 trp1-Δ63 leu2-Δ1 upf2-Δ1::HIS3 

Note: All strains were constructed for this study except PLY102 and PLY38, which were described 
previously (7). YJP121 was obtained from P. Hieter. 

 
Table II. Plasmids 
Plasmid Vector Yeast genes 
pRS315  LEU2 CEN6 ARS4 
pRS316  URA3 CEN6 ARS4 
pRS315UPF1 pRS315 LEU2 CEN6 ARS4 UPF1 
pRS316UPF1 pRS316 URA3 CEN6 ARS4 UPF1 
pRS316upf1–3 pRS316 URA3 CEN6 ARS4 upf1–3 
pRS316UPF1-D4 pRS316 URA3 CEN6 ARS4 UPF1-D4 
pRS315UPF1–3HA pRS315 LEU2 CEN6 ARS4 UPF1–3HA 
pRS314UPF1–3HA pRS314 TRP1 CEN6 ARS4 UPF1–3HA 
pRS314UPF1-D4–3HA pRS314 TRP1 CEN6 ARS4 UPF1-D4–3HA 
pRS314upf1–3-3HA pRS314 TRP1 CEN6 ARS4 upf1–3-3HA 
pUZ178 pRS316 URA3 CEN6 ARS4 UPF2 
pRS316UPF2–3myc pRS316 URA3 CEN6 ARS4 UPF2–3myc 
pLS17 pRS316 URA3 CEN6 ARS4 UPF3 
pLS51 pRS316 URA3 CEN6 ARS4 UPF3–3HA 
pLS74 pRS315 LEU2 CEN6 ARS4 UPF3 
pLS80 pRS316 URA3 CEN6 ARS4 UPF1 UPF2 

Note: All plasmids were constructed for this study or were described previously 
(15) except pUZ178, which was obtained from P. Hieter. 

 
RNA Methods 
Yeast total RNA was isolated by hot phenol extraction (7). For Northern blotting, RNA 
samples were denatured either by treatment with glyoxal and Me2SO or formamide-
formaldehyde before fractionation on 1.0% agarose gels (23) or 1.0% agarose, 16.2% for-
maldehyde gels (15). Gels were loaded with 10 mg of total RNA per lane. Fractionated 
RNAs were transferred to GeneScreen Plus membranes (NEN Life Science Products). DNA 
probes were prepared from restriction fragments or polymerase chain reaction fragments 
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as described by Atkin et al. (15). Hybridization of DNA probes to RNA blots was essen-
tially as described by Klessig and Berry (24). 
 
Construction of UPF Alleles Coding for Epitope-tagged Proteins 
The UPF1–3EP allele encodes a functional, epitope-tagged version of Upf1p that contains 
three tandem copies of the influenza virus hemagglutinin (HA) protein epitope immedi-
ately adjacent to the last amino acid of Upf1p as described previously (15). The HA 
epitopes are recognized by monoclonal antibody (mAb) 12CA5. In this paper, we refer to 
the modified gene and protein as UPF1–3HA and Upf1p-3HA, respectively. 

UPF2 was modified by placing a DNA sequence encoding three copies of a c-Myc 
epitope immediately upstream of the translation termination codon to create UPF2–3myc. 
A 1110-base pair EcoRI-HincII fragment from the 3′ end of UPF2 was subcloned into the 
EcoRI-SmaI sites of pBKCMV (Stratagene, La Jolla, CA). The sequence 5′-CGT AGT TTC 
GAC TTG GGC CCA TGA-3′, which contains a unique Bsp120I site, was inserted at the 
Psp1406I site near the UPF2 stop codon, resulting in loss of the Psp1406I site. A NotI frag-
ment coding for three copies of the c-Myc epitope was cloned into the Bsp120I site. An 
EcoRI-KpnI fragment containing the c-Myc epitopes was used to replace the same region 
of a wild-type UPF2 gene carried on pRS316, resulting in plasmid pRS316UPF2–3myc (Ta-
ble II). Using 9E10 mAbs, the tagged protein, Upf2p-3myc, was detected on Western blots 
as a 130-kDa protein whose appearance is unique to strains carrying the modified gene. 

UPF3 was modified by placing a DNA sequence encoding three tandem copies of the 
HA epitope between the fourth and fifth codons near the 5′ end to create UPF3–3HA. An-
nealed oligodeoxynucleotides (5′-TGC GGC CGC TCT AGA AGC GGC CTC TTG-3′ and 
5′-AGC GGC CGC TTC TAG AGC GGC CGC ACA-3′), carrying NotI and XbaI sites were 
introduced into the BsrDI site near the 5′ end of UPF3. A NotI DNA fragment encoding 
three tandem copies of the HA epitope was inserted into the NotI site, resulting in plasmid 
pLS51 (Table II). Using 12CA5 mAbs, the tagged protein, Upf3p-3HA, was detected on 
Western blots as a 49-kDa protein whose appearance is unique to strains carrying the mod-
ified gene. 
 
Construction of Mutant Alleles of UPF1 
The mutation upf1–3 is a substitution of serine for cysteine at position 122, which is located 
in the zinc finger region of UPF1 (25). We constructed this allele using two polymerase 
chain reaction products amplified in separate reactions with primer pair UPF1wt352a (5′-
TAT CCC CTA AGT CAG AAT CTG G-3′) and ALA1wt (5′-GAT TTC ATC AGG AAA 
GAA GGA AGG GCA G-3′) and primer pair UPF1MUT1s (5′-CCG TTT TGG AAT CTT 
ATA ACT GTG-3′) and mutagen B (5′-GTG TTG GAG GTG GCG TTT TAC T-3′). Polymer-
ase chain reaction products were blunt-ended with T4 DNA polymerase, ligated, and di-
gested with BstXI and SphI. Fragments of the correct size were gel-purified, subcloned into 
pBluescript (Stratagene), and analyzed by DNA sequence analysis. BstXI/EcoRV fragments 
carrying the Ser122 mutation were used to replace a BstXI/EcoRV DNA fragment in the wild-
type UPF1 gene and the UPF1–3HA gene to produce upf1–3 and upf1–3-3HA. These genes 
are carried on the plasmids pRS316upf1–3 and pRS314upf1–3-3HA, respectively (Table II). 
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The mutation UPF1-D4, described previously (10), causes a substitution of arginine for 
cysteine at position 779, which is located at a conserved position in the RNA helicase do-
main. The mutant allele is carried on plasmid pRS316UPF1-D4 (Table II). A modified gene 
was constructed that codes for the protein Upf1-D4p-3HA, which contains the D4 mutation 
plus a triple HA tag at the C terminus. This was accomplished by replacing a NruI-BamHI 
fragment at the 3′ end of UPF1-D4 with a NruI-BamHI fragment from UPF1–3HA, resulting 
in the plasmid pRS314UPF1-D4–3HA (Table II). 
 
Functional Assays for Epitope-tagged Upf Proteins 
Epitope-tagged proteins were assayed for function by growth tests in strains lacking the 
corresponding wild-type gene using a previously described allosuppression assay (10). 
Strains carrying wild-type UPF genes, the frameshift mutation his4–38, and the tRNA 
frameshift suppressor SUF1–1 produce an unstable his4–38 mRNA, resulting in failure to 
grow at 37°C on medium lacking histidine. Impaired function of any one of the three Upf 
proteins stabilizes the mRNA, resulting in growth on medium lacking histidine at 37°C. 
Centromeric plasmids carrying UPF2–3myc or UPF3–3HA were transformed into strains 
lacking the corresponding wild-type UPF gene and carrying his4–38 and SUF1–1. Using 
the allosuppression assay, we showed previously that the strain carrying UPF1-HA (for-
merly UPF1–3EP) grew poorly on medium lacking histidine at 37°C (15), suggesting that 
function was retained. Quantitative measurement of his4–38 mRNA levels by Northern 
blotting showed that Upf1p-3HA retained 80–90% of function compared with the wild-
type protein. Growth tests using strains carrying UPF2–3myc and UPF3–3HA gave similar 
results, indicating the all three of the tagged proteins retain function at a level comparable 
with wild type. The stabilities of the tagged proteins are therefore presumed to be similar 
to the corresponding wild-type proteins. 
 
Protein Extraction, Fractionation, and Detection 
The relative abundance and solubility of epitope-tagged proteins was determined by frac-
tionation of total proteins from cell lysates. Yeast cultures were grown to an A600 of 0.4–0.6. 
Half of the culture was extracted with a total protein lysis buffer (5 mM EDTA, 250 mM 
NaCl, 0.1% Nonidet P-40, 50 mM Tris-HCl, pH 7.4), while the other half was extracted with 
polyribosome lysis buffer (100 mM NaCl, 33 mM MgCl2, 0.1% diethyl pyrocarbonate, 50 
mM cycloheximide, 0.2 mg/ml heparin, 10 mM Tris-HCl, pH 7.5). Soluble extracts were 
quantified using a BCA protein concentration kit (Pierce). A concentrated 4 × Laemmli 
buffer was added to both soluble extracts to a 1 × final concentration. The insoluble mate-
rial remaining after the lysis buffer extractions was further extracted with 1 × Laemmli 
buffer. The presence of the reducing agents in 1 × Laemmli buffer, which are necessary for 
efficient solubilization, interfered with accurate protein quantification. To circumvent this, 
the volume of 1 × Laemmli buffer used in the second extraction was equal to the final ad-
justed volume of the respective soluble extract. We reasoned that using equal volumes 
from both the first and second extractions would provide equivalent representative sam-
ples from each extraction. Using these equivalent representative samples allows for a di-
rect comparison of the relative amount of a given protein present in each extraction. 
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For a given lysis buffer, a known amount of protein from the first extraction and an 
equal volume, and therefore an equivalent representative sample, from the second extrac-
tion were fractionated by SDS-polyacrylamide gel electrophoresis. The proteins were 
transferred to Immobilon-NC membranes (Millipore Corp., Bedford, MA) and examined 
by quantitative Western blotting. Upf1p-3HA and Upf3p-3HA were detected with 12CA5 
mAbs (Berkeley Antibody Company, Richmond, CA), and Upf2p-3myc was detected with 
9E10 mAbs (Hybridoma Facility, University of Wisconsin Biotechnology Center, Madison, 
WI). 35S-Labeled secondary antibodies specific for mouse Ig (Amersham Life Sciences) 
were used at a concentration of 0.1 μCi/ml. 

For sucrose density gradient fractionation, proteins were extracted in polyribosome ly-
sis buffer and fractionated on 7–47% sucrose gradients prepared as described previously 
(15). Upf1p-3HA, Upf2p-3myc, and Upf3p-3HA were detected in sucrose gradient fractions 
by Western blotting using ECL and Hyperfilm (Amersham Life Sciences) as described pre-
viously (14). Films of the Western blots were analyzed with a Molecular Dynamics densi-
tometer (Sunnyvale, CA). 
 
Results 
 
UPF Genes Function in a Common mRNA Decay Pathway 
CYH2 pre-mRNA accumulation has been shown to be a sensitive indicator of whether the 
NMD pathway is functional (26). CYH2, which encodes the ribosomal protein L29, contains 
an intron that is inefficiently spliced. An in-frame premature termination codon located 
within the intron targets the CYH2 pre-mRNA for accelerated decay (27). To assess the 
effects of multiple upf mutations on NMD, we determined the degree to which CYH2 pre-
mRNA accumulates relative to the mature CYH2 mRNA by Northern blotting of total RNA 
from isogenic derivatives of strain LRSY307 (Table I). Collectively, these strains represent 
all possible combinations of triple, double, and single null alleles of UPF1, UPF2, and UPF3 
(see “Experimental Procedures”; Table I). 

Northern blots were probed with a labeled DNA fragment corresponding to nucleotides 
15–780 of the CYH2 ORF and intron (27). The CYH2 pre-mRNA/mRNA accumulation ra-
tios were determined and used to calculate the relative accumulation of CYH2 pre-mRNA 
(Table III). For strains carrying the single, double, or triple disruptions, the relative accu-
mulation of CYH2 pre-mRNA ranged from 3.2 to 3.8 (average 3.4). These results indicate 
that the effects of double and triple disruptions on CYH2 pre-mRNA accumulation are 
nonadditive compared with the effects of single gene disruptions, suggesting that all three 
UPF genes function in a common mRNA decay pathway. 
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Table III. Accumulation of CYH2 pre-mRNA in strains carrying upf null alleles 
Plasmids in strain LRSY307 Genotype Accumulation ratio Relative accumulation 
pUZ178, pLS74 upf1— 1.9 (0.26) 3.2 
pRS316UPF1, pLS74 upf2— 2.1 (0.04) 3.5 
pLS80, pRS315 upf3— 2.0 (0.01) 3.3 
pRS316, pLS74 upf1—, upf2— 2.0 (0.19) 3.3 
pRS316UPF1, pRS315 upf2—, upf3— 2.1 (0.00) 3.5 
pUZ178, pRS315 upf1—, upf3— 2.3 (0.46) 3.8 
pRS316, pRS315 upf1—, upf2—, upf3— 2.0 (0.10) 3.3 
pLS80, pLS74 UPF1, UPF2, UPF3 0.6 (0.00) 1.0 

Note: CYH2 pre-mRNA/CYH2-mRNA accumulation ratios were determined by quantitative Northern blot-
ting. Relative accumulation for each strain was calculated by dividing the pre-mRNA/mRNA accumulation 
ratio by the ratio established for the strain carrying wild-type UPF1, UPF2, and UPF3. S.D. values are shown 
in parentheses (n = 2). Strain LRSY307 is described in Table I, and the plasmids are described in Table II. 

 
Solubility and Relative Abundance of Upf Proteins 
To evaluate the results of the sucrose gradients presented below, we determined the solubil-
ity and relative abundance of epitope-tagged Upf proteins by quantitative Western blotting. 
Cell extracts were prepared from strains PLY102[pRS314UPF1–3HA], JDY8[pRS316UPF2–
3myc], and LRSY203[pLS51 (UPF3–3HA)] (Tables I and II). The plasmids in these strains 
contain the genes coding for Upf1p-3HA, Upf2p-3myc, and Upf3p-3HA. Cell lysates were 
prepared using two different lysis buffers, one containing 100 mM NaCl (polyribosome 
lysis buffer) and the other containing 250 mM NaCl and 0.1% Nonidet P-40 detergent (total 
protein lysis buffer) (see “Experimental Procedures”). 

The relative amounts of each of the three proteins extracted were quantified using 35S-
labeled secondary antibodies on Western blots by PhosphorImager (Molecular Dynamics) 
analysis (Fig. 1). To compare the relative efficiencies of extraction for each lysis buffer, we 
calculated the percentage of Upf protein extracted with each lysis buffer (Fig. 1, lane 1 or 
3) relative to the sum of total protein extracted (Fig. 1, either lanes 1 plus 2 or lanes 3 plus 
4). We found that 64, 58, and 40% of total Upf1p-3HA, Upf2p-3myc, and Upf3p-3HA, re-
spectively, were soluble in the total protein lysis buffer (Fig. 1, Table IV). In polyribosome 
lysis buffer, 44, 24, and 15% of total Upf1p-3HA, Upf2p-3myc, and Upf3p-3HA, respec-
tively, were soluble (Fig. 1, Table IV). These results indicate that a significant portion of 
each of the three proteins is soluble in the polyribosome lysis buffer. However, since pol-
yribosome lysis buffer did not completely solubilize the Upf proteins, the sucrose gradi-
ents represent an analysis of the distribution of only the soluble fraction for each protein. 
  



A T K I N  E T  A L . ,  J O U R N A L  O F  B I O L O G I C A L  C H E M I S T R Y  2 7 2  ( 1 9 9 7 )  

9 

 
 

Figure 1. Differential extraction of Upf1p-3HA, Upf2p-3myc, and Upf3p-3HA. The figure 
shows 35S-labeled Western blots of cell extracts prepared from strain PLY102[pRS314UPF1–
3HA] (A), strain JDY8[pRS316UPF2–3myc] (B), and LRSY203[pLS51], which carries Upf3p-
3HA (C). Cells were extracted with a total protein lysis buffer (lane 1) or polyribosome 
lysis buffer (lane 3) (see “Experimental Procedures”). The pellets of insoluble material 
from lysis buffer extractions were extracted with 1 × Laemmli buffer (lanes 2 and 4). Equal 
volumes from adjusted lysis buffer and Laemmli buffer extractions were resolved by 7.5% 
SDS-polyacrylamide gel electrophoresis (Upf1p-3HA and Upf2p-3myc) or 10% SDS-
polyacrylamide gel electrophoresis (Upf3p-3HA and control). Upf1p-3HA and Upf3p-
3HA were detected with 12CA5 mAbs, and Upf2p-3myc was detected with 9E10 mAbs 
on Western blots. The primary mAbs were detected with 35S-labeled secondary antibodies 
specific for mouse Ig. The positions of bands in a prestained set of molecular weight stand-
ards are indicated to the left in each panel. Exposures of the Western blots were individ-
ually optimized and do not visually reflect the stoichiometric difference between Upf1p 
and Upf3p. 
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Table IV. Differential solubility of epitope-tagged Upf proteins 

Protein 
Total protein lysis buffer  Polyribosome lysis buffer 
Buffer Pellet  Buffer Pellet 

Upf1p-3HA 64 ± 0% 36 ± 0%  44 ± 4% 56 ± 4% 
Upf2p-3myc 58 ± 5% 42 ± 5%  24 ± 5% 76 ± 5% 
Upf3p-3HA 40 ± 6% 60 ± 6%  15 ± 1% 85 ± 1% 

Note: S.E. is reported as a measure of the variation observed on two trials. 

 
The epitope-tagged versions of Upf1p and Upf3p contain the same triple HA epitope. 

The amounts of each protein were compared to estimate the stoichiometric relationship 
between the two. We calculated the relative protein ratio from the sum of Upf1p-3HA de-
tected in lanes 1 and 2 (Fig. 1) compared with the same sum for Upf3p-3HA. The ratio was 
corrected for differences in total protein loaded from the lysis buffer fractions. Using this 
approach, we found that Upf1p-3HA is 66-fold more abundant than Upf3p-3HA. Assum-
ing this reflects a difference in the in vivo concentrations of the two proteins, this result 
suggests that Upf1p and Upf3p are not present at 1:1 stoichiometry. 
 
Distribution of Upf1p-3HA in Strains Carrying Gene Disruptions in UPF2 and UPF3 
Previously, we showed that Upf1p-3HA codistributes with both polyribosomes and the 
ribosomal protein L1 of the 60 S ribosomal subunit by sucrose gradient fractionation (15). 
Upf1p-3HA coshifted along with L1 into fractions coincident with 80 S particles when 
growth conditions were altered or when polyribosomes were disrupted by treatment with 
RNase A. These results suggested an association between Upf1p-3HA and polyribosomes. 
In this study, we examined whether the distribution of Upf1p-3HA depends on the pres-
ence of Upf2p or Upf3p. 

First, a soluble lysate was prepared from strain PLY102[pRS315UPF1–3HA], which car-
ries the wild-type alleles of UPF2 and UPF3 (Tables I and II). Proteins were fractionated in 
a sucrose gradient, and the distribution of Upf1p-3HA was determined by ECL Western 
blotting (Fig. 2). Although ECL provides a nonlinear reflection of protein abundance, use-
ful comparisons can still be made by examining the relative overall pattern of protein dis-
tribution across the gradient. Using this approach, Upf1p-3HA was found to be distributed 
throughout the sucrose gradient (Fig. 2A). The majority was detected in fractions 10–24, 
which also contain 40 and 60 S subunits, 80 S ribosomal particles, and polyribosomes. 
There was a peak of accumulation in fractions 13–15, the same fractions that contain the 80 
S ribosomal particles. Some Upf1p-3HA also accumulated in low density fractions, where 
monomeric proteins and small complexes migrate. 
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Figure 2. 7–47% sucrose density gradient fractionation of Upf1p-3HA in the presence or 
absence of a functional UPF2 or UPF3 gene. Cell extracts were prepared from strain 
PLY102[pRS315UPF1–3HA] (A), which carries functional versions of all three UPF genes, 
strain YJP121[pRS315UPF1–3HA] (B), which carries a UPF2 disruption, and strain 
AAY181[pRS315UPF1–3HA] (C), which carries a UPF3 disruption. Absorbance at A254 
was monitored across the gradient to locate fractions containing 40 and 60 S ribosomal 
subunits, 80 S ribosomal particles, and polyribosomes. The proteins were recovered by 
acetone precipitation, resolved by 10% SDS-polyacrylamide gel electrophoresis, and de-
tected by ECL Western blotting. Solubilized pellets from the sucrose gradients (P) were 
included on the right of the Western blots. 

 
To monitor the effects of disrupting UPF2 on the distribution of Upf1p-3HA, we com-

pared the distribution in Figure 2A with that obtained using strain YJP121[pRS315UPF1–
3HA] (Fig. 2B), which contains the UPF1–3HA gene and a disruption of UPF2 (Tables I and 
II). Upf1p-3HA was distributed throughout the gradient with the majority detected in frac-
tions 12–24 and the remainder in fractions near the top of the gradient. Comparison of the 
histograms in Figure 2, A and B, indicates that a minor amount of Upf1p-3HA shifts from 
polyribosome fractions to lighter fractions in the absence of Upf2p, but a significant 
amount of Upf1p-3HA remains in the fractions containing polyribosomes. This suggests 
that Upf1p can still associate with polyribosomes when UPF2 is disrupted. 

A similar approach was used to assess how a disruption of the UPF3 gene affects the 
distribution of Upf1p-3HA using strain AAY181[pRS315UPF1–3HA] (Tables I and II), 
which contains the UPF1–3HA gene and a disruption of UPF3. Upf1p-3HA was again dis-
tributed throughout the gradient in a pattern resembling that found for strain 
PLY102[pRS315UPF1–3HA] (Fig. 2C). The results seen in Figure 2, A and C, were similar, 
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indicating that the previously demonstrated association of Upf1p with polyribosomes does 
not depend on the presence of Upf3p. 
 
Effects of Mutations in the Cysteine-rich Region and the Helicase Domain of Upf1p 
We analyzed additional mutations in UPF1 that were deemed of special interest because 
of their previously described biochemical or genetic properties (10, 25). One mutation, 
upf1–3, is a substitution of serine for cysteine in a region of the protein that contains mul-
tiple cysteine residues that could be involved in binding zinc (Fig. 3). This mutation causes 
reduced RNA helicase activity and impaired physical interaction with Upf2p (25). Another 
mutation, UPF1-D4, is located in the helicase domain. This mutation causes dosage-de-
pendent, dominant-negative inhibition of wild-type Upf1p function (10). 

Both of these mutations were examined to determine the extent to which they impair 
Upf1p function and whether they cause any change in the distribution of Upf1p in sucrose 
gradients. The function of Upf1p was assayed by allosuppression in strains carrying the 
mutations (see “Experimental Procedures”). This assay monitors the extent of growth pro-
portional to accumulation of his4–38 mRNA. Both of the mutations conferred growth at 
37°C in media lacking histidine that was comparable with growth conferred by the null 
allele upf1–2 (Fig. 3B). These results indicate that upf1–3 and UPF1-D4 significantly impair 
the function of Upf1p. 
 

 
 

Figure 3. Characterization of mutant alleles of UPF1. A, location and nature of mutations 
in UPF1. The relevant wildtype amino acid sequence is shown immediately above the 
schematic diagram of Upf1p. Subscript numbers indicate the positions of the amino acids. 
Arrows denote the location of the mutations and the resulting amino acid change. B, 
growth tests using an allosuppression assay (see “Experimental Procedures”) to assess 
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the ability of the mutant UPF1 alleles to compensate for loss of wild-type UPF1 function. 
Strain PLY38 was separately transformed with pRS316 (1), pRS316UPF1 (2), pRS316upf1–
3 (3), and pRS316UPF-1-D4 (4). Growth of the transformants was tested by plating 100, 10–

1, 10–2, and 10–3 serial dilutions of log phase cultures (left to right) onto –uracil, and –uracil–
histidine plates at 30°C and at 37°C. C, effect of mutations on the accumulation of CYH2 
pre-mRNA. An autoradiograph of a representative Northern blot is shown. Northern 
blots were prepared using total RNA isolated from strain PLY38 separately transformed 
as described for panel B. The Northern blots were probed with a DNA fragment comple-
mentary to nucleotides 15–780 of the CYH2 ORF and intron (27). 

 
We also assessed the effects of the mutations on the accumulation of CYH2 pre-mRNA. 

Total RNA from each mutant strain was analyzed by Northern blotting using a probe spe-
cific for CYH2 RNA. The relative accumulation of CYH2 pre-mRNA was compared with 
the relative accumulation in the wild-type strain and the strain carrying the upf1–2 null 
allele (Fig. 3C). From the relative accumulation, we calculated (see Table V legend) that 
upf1–3 retained only 15% of function compared with wild type and thus approaches com-
plete loss of function. UPF1-D4 retained 62% of function in the absence of wild-type UPF1. 
Thus, although UPF1-D4 causes loss of function as measured by allosuppression, pre-
CYH2 accumulation indicates that the function of the mutant protein is only partially di-
minished. 
 

Table V. Accumulation of CYH2 pre-mRNA in strains carrying upf1–3 and UPF1-D4 
Plasmid in 
strain PLY38 Genotype 

Accumulation 
ratio 

Relative 
accumulation 

Function 
retained (%) 

pRS316 upf1–2 1.5 (0.21) 7.5 0 
pRS316UPF1 UPF1 0.2 (0.64) 1.0 100 
pRS316upf1–3 upf1–3 1.3 (0.01) 6.5 15 
pRS316UPF1-D4 UPF1-D4 0.7 (0.01) 3.5 62 

Note: CYH2 pre-mRNA:CYH2-mRNA accumulation ratios were determined by quantitative Northern blot-
ting. Relative accumulation for each strain was calculated by dividing the pre-mRNA:mRNA accumulation 
ratio by the ratio established for strain PLY38[pRS316UPF1]. The upf1–2 mutation in strain PLY38[pRS316] 
confers complete loss of function (10). The percentage of function retained for upf1–3 and UPF1-D4 was calcu-
lated from the accumulation ratios and is equal to 1 – ((ratioupf1–3 (or UPF1-D4) – ratioUPF1)/(ratioupf1–2 – ratioUPF1)) × 
100. S.D. values are shown in parentheses (n = 2). 

 
We compared the distribution of the mutant proteins with that of wild-type Upf1p in 

sucrose gradients. For this purpose, mutant alleles were constructed that code for the 
epitope-tagged mutant proteins Upf1–3p-3HA and Upf1-D4p-3HA (see “Experimental 
Procedures”). Soluble lysates were prepared and analyzed from the strains 
PLY102[pRS314UPF1–3HA], PLY102[pRS314upf1–3-3HA], and PLY102[pRS314 UPF1-
D4–3HA] (Fig. 4, A, B, and C, respectively). Upf1p-3HA and Upf1–3p-3HA were both dis-
tributed throughout the gradient with similar peaks of accumulation both in fractions con-
taining polyribosomes and in lighter fractions. Unlike these two proteins, very little Upf1-
D4p-3HA was detected in the lightest fractions (Fig. 4C, fractions 1–5). Most of the protein 
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was detected in peak fractions corresponding to 80 S ribosomal particles and polyribo-
somes (fractions 9–24). Assuming no change in protein stability, this suggests that the mu-
tation may cause a modest shift to heavier fractions. 
 

 
 

Figure 4. Distribution of the epitope-tagged proteins Upf1p-3HA, Upf1–3p-3HA, and 
Upf1-D4p-3HA in 7–47% sucrose gradients. Cell extracts were prepared from PLY102 
[pRS314UPF1–3HA] (A), PLY102[pRS314upf1–3-3HA] (B), and PLY102[pRS314UPF1-
D4–3HA] (C). The gradients were analyzed as described in Figure 2. 

 
Distribution of Upf2p-3myc 
Prior to these studies, it was not known whether Upf2p or Upf3p associate with polyribo-
somes in a manner resembling the demonstrated association for Upf1p (15). The distribu-
tion of Upf2p-3myc was analyzed in sucrose gradients using soluble lysates prepared from 
strain JDY8[pRS316UPF2–3myc] (Tables I and II), which contains wild-type UPF1 and 
UPF3 alleles (Fig. 5A). Upf2p-3myc was distributed throughout most of the gradient with 
two major peaks of accumulation corresponding to fractions containing ribosomal subu-
nits and 80 S particles (fractions 7–13). The remainder was detected in heavier fractions 
containing polyribosomes (fractions 14–24). 
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Figure 5. 7–47% sucrose density gradient fractionation of Upf2p-3myc in the presence or 
absence of a functional UPF1 or UPF3 gene. Cell extracts were prepared from strain JDY8-
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[pRS316UPF2–3myc] (A), which carries functional versions of all three UPF genes, strain 
JDY8[pRS316UPF2–3myc] (B), pretreated with RNase A prior to fractionation, strain 
LRSY307[pRS316-UPF2–3myc, pLS74] (C), which carries a UPF1 disruption, and strain 
LRSY307-[pRS316UPF2–3myc, pRS315UPF1] (D), which carries a UPF3 disruption. The 
gradients were analyzed as described in Figure 2. 

 
To determine whether codistribution of Upf2p-3myc with polyribosomes in the gradi-

ent reflects an association of the two, an experiment was performed using limited RNase 
A digestion of a lysate prior to fractionation. RNase digestion was shown previously to 
cause a collapse of the polyribosome profile into a single 80 S peak (15). When a soluble 
lysate prepared from strain JDY8[pRS316UPF2-3myc] was treated with RNase A prior to 
fractionation, the resulting optical density profile (A254) collapsed into a major peak (frac-
tions 10–13) corresponding to 80 S ribosomal particles (Fig. 5B). A coincident redistribution 
of UPF2p-3myc into fractions containing 80 S particles was also observed. This indicates 
that the distribution of Upf2p-3myc is dependent on the distribution of polyribosomes and 
suggests that the protein is associated with polyribosomes. 

Next we tested whether the typical distribution of Upf2p-3myc requires the presence of 
Upf1p or Upf3p. To test the effect of disrupting UPF1, a soluble lysate was prepared from 
strain LRSY307[pRS316UPF2–3myc, pLS74] (Tables I and II). Compared with the profile in 
Fig. 5A, disruption of UPF1 causes a decrease in the amount of Upf2p-3myc detected in 
fractions 7–13, which contain ribosomal subunits and 80 S particles (Fig. 5C). We found a 
corresponding increase in the amount detected in fractions 14–24, which contain polyribo-
somes. Assuming that the stability of Upf2p-3myc is unaffected in the absence of Upf1p, 
this result is indicative of a shift of the protein toward fractions containing polyribosomes. 

To test the effect of disrupting UPF3, a soluble lysate was prepared from strain 
LRSY307[pRS316UPF2–3myc, pRS315-UPF1] (Tables I and II). Compared with the profile 
in Fig. 5A, disruption of UPF3 drastically alters the profile (Fig. 5D). The majority of Upf2p-
3myc was detected in fractions 4–13 with peak accumulation occurring in fractions 12, 
which is coincident with 80 S ribosomal particles. A significant amount of the protein was 
detected in fractions with densities lighter than 80 S particles. Only a minor amount of the 
protein was detected in fractions that contain polyribosomes (fractions 14–24). This result 
is indicative of a shift of Upf2p-3myc out of fractions containing polyribosomes in the ab-
sence of Upf3p. 
 
Distribution of Upf3p-3HA 
The distribution of Upf3p-3HA was analyzed in a manner similar to that described above 
for Upf2p-3myc. However, 12CA5 antibodies cross-react with a 51-kDa soluble yeast pro-
tein that migrates at a position similar to Upf3p-3HA on Western blots (not shown). The 
presence of the cross-reacting protein was not a problem in the detection of Upf1p-3HA 
because its larger size allowed for unambiguous identification. To distinguish between the 
cross-reacting protein and Upf3p-3HA, we performed a control experiment using a soluble 
lysate from strain LRSY203[pRS316], which lacks the UPF3–3HA gene (Tables I and II) (Fig. 
6A). The cross-reacting protein was detected almost exclusively in the lightest fractions of 
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the gradient (fractions 1–3). In subsequent experiments, we regarded the protein detected 
in these fractions as being the cross-reacting protein rather than Upf3p-3HA. 
 

 
 

Figure 6. 7–47% sucrose density gradient fractionation of UPF3–3HA. Extracts were pre-
pared from cells grown at 30°C using strains LRSY203[pRS316] (A), which lacks UPF3–
3HA, strain LRSY203[pLS51] (B), which carries UPF3–3HA, and strain LRSY203[pLS51] 
(C) pretreated with RNase A prior to fractionation. The gradients were analyzed as de-
scribed in the legend to Figure 2. 

 
The distribution of Upf3p-3HA was analyzed in a sucrose gradient using a soluble ly-

sate prepared from strain LRYS203[pLS51] (Tables I and II), which contains the UPF3– 3HA 
gene and wild-type UPF1 and UPF2 genes (Fig. 6B). Upf3p-3HA was distributed in frac-
tions 12–24 with peak accumulation occurring in fractions 13–14, which are coincident with 
80 S ribosomal particles. A significant amount of Upf3p-3HA was detected in fractions 
containing polyribosomes (fractions 14–24). To determine whether the codistribution be-
tween Upf3p-3HA and polyribosomes is indicative of an association between the two, we 
performed limited RNase A digestion of a soluble lysate from strain LRSY203[pRLS51] 
(Fig. 6C). Compared with the distribution in Fig. 6B, the optical density profile (A254) indi-
cates that RNase A treatment causes polyribosomes to collapse into peak fractions 11 and 
12, corresponding to 80 S ribosomal particles. Upf3p-3HA was redistributed into fractions 
9–16 with a major peak corresponding to 80 S particles and a significant decrease in the 
amount of protein detected in fractions 14–24, which contain polyribosomes. Taken to-
gether, these results suggest that Upf3p-3HA is associated with polyribosomes. 
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Discussion 
 
Mutations in each of the UPF genes suppress the same nonsense and frameshift mutations 
in a variety of genes and they have similar effects on the accumulation and decay of non-
sense mRNAs (7, 8, 10–13). Previously it was shown that strains that are doubly null for 
pairwise combinations of the UPF genes have nonadditive effects on the turnover of non-
sense mRNAs (10–13). In this paper, we show that isogenic strains carrying null mutations 
in all three of the UPF genes are viable and have nonadditive effects on the turnover of 
CYH2 pre-mRNA, which contains a premature termination codon in the inefficiently 
spliced intron causing it to be a target of NMD (27). These results suggest that the products 
of the UPF genes function in a common pathway leading to accelerated mRNA decay. 

Recent evidence from two-hybrid studies suggests that Upf2p may form a bridge be-
tween Upf1p and Upf3p, allowing formation of a tripartite complex (17). However, data 
from the two-hybrid system provide little information on the stoichiometry of the interact-
ing components. To begin addressing the stoichiometry of the Upf proteins, we deter-
mined the relative concentration of the epitope-tagged proteins Upf1p-3HA and Upf3p-
3HA using quantitative Western blotting. Both proteins contain an identical sequence cod-
ing for three tandem copies of the HA epitope, with the tag located at the C terminus of 
Upf1p and the N terminus of Upf3p. The epitope-tagged proteins are expressed from their 
respective native promoters on the same single-copy CEN plasmid. Both proteins retain a 
level of function in NMD that is comparable with the level of function of their wild-type 
counterparts. From this, we infer that the presence of the epitope tags does not significantly 
destabilize either protein. The relative concentrations of the two epitope-tagged proteins 
should therefore provide a good approximation of the normal stoichiometry of wild-type 
Upf1p and Upf3p. Since both of the tagged proteins were detected on quantitative Western 
blots using fully denaturing conditions, the epitopes should be detected with equal effi-
ciency. 

Using this method and with these assumptions, we found that the overall concentration 
of epitope-tagged Upf3p was as much as 66-fold less than epitope-tagged Upf1p. If, as we 
expect, this reflects the relative in vivo ratio of the wild-type proteins, the concentrations of 
the two proteins deviate significantly from a 1:1 ratio, with Upf3p being the limiting factor. 
Other evidence supports a lower intracellular abundance for Upf3p. For example, a variety 
of epitope-tagged versions of Upf1p and Upf3p have been studied by immunofluorescence 
microscopy (15).2 Upf3p consistently gives a much weaker fluorescent signal than Upf1p,2 
suggesting a large difference in the in vivo ratio of the two proteins. Although a tripartite 
complex may form, as suggested from two-hybrid analysis (17), the in vivo concentration 
of this putative complex may be relatively low and may form in the presence of an overall 
vast excess of Upf1p. 

In addition to the stoichiometric limitation on complex formation, Upf1p and Upf3p 
exhibit major differences in intracellular distribution. The majority of soluble Upf1p, which 
accounts for about half of total Upf1p, is found in association with polyribosomes (15). 
Using indirect immunofluorescence and confocal microscopy, it was shown that Upf1p 
localizes throughout the cytoplasm with virtually no detectable protein found in the nu-
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cleus. The distribution of Upf3p deviates significantly from that of Upf1p.2 Indirect immu-
nofluorescence reveals that Upf3p localizes both to the nucleus and to the cytoplasm with 
the greater proportion accumulating in the nucleus. Presumably, the nuclear fraction is not 
available for association with cytoplasmic polyribosomes. This is consistent with our re-
sults showing that about 15% of total Upf3p is soluble in polyribosome lysis buffer. Alt-
hough most of soluble Upf3p codistributes with polyribosomes, this represents a minor 
fraction of total Upf3p. We assume that most of remainder may be located in the nucleus. 
We are currently studying the import and export of Upf3p across the nuclear envelope in 
an effort to determine how this protein or a complex it may be part of becomes available 
for interaction with cytoplasmic polyribosomes. 

Upf1p was studied by examining the behavior of two epitope-tagged, mutant forms of 
the protein in sucrose gradients. One mutation, upf1–3, is located in a cysteine-rich domain 
that potentially binds zinc. The results of an allosuppression assay for NMD and an assay 
for accumulation of CHY2 pre-mRNA show that upf1–3 severely impairs function. This 
same mutation causes reduced RNA helicase activity and impaired physical interaction 
with Upf2p (25). Using an epitope-tagged version of the mutant protein (Upf1–3p-3HA), 
we found that it distributed in a manner indistinguishable from Upf1p-3HA in sucrose 
gradients. Since the mutant protein associates normally with polyribosomes, it appears 
that helicase activity and interaction with Upf2p are not required in order for Upf1p to 
associate with polyribosomes. 

The other mutation, called UPF1-D4, is located in a conserved residue in the RNA hel-
icase domain. Previously, we studied the phenotypic effects of this mutation in strains that 
also carry a wild-type UPF1 gene. We found that it confers dominant-negative inhibition 
of function of wild-type Upf1p (10). The strength of the inhibitory effect was dependent on 
the dosage of the UPF1-D4 gene, with the strongest effect detected when a gene carrying 
the mutation was placed on a multicopy plasmid. Currently, the molecular basis for the 
dominant-negative phenotype is not understood. 

To begin understanding the effects of this mutation, we examined the function of 
Upf1p-D4 in the absence of wild-type UPF1. Using this approach, it was possible to assess 
how the mutation affects function independently of its dominant-negative effects on wild-
type Upf1p. We found that UPF1-D4 causes a significant impairment of function when 
assayed by allosuppression. However, by examining the relative accumulation of CYH2 
pre-mRNA, using RNA extracted from cells grown at 30°C, it appears that the mutant pro-
tein retains partial function. Upf1p-D4 presumably lacks function at 37°C, the temperature 
at which it exerts its dominant-negative effects. When we examined an epitope-tagged ver-
sion of Upf1p-D4 in sucrose gradients, the mutation caused a modest shift of the protein 
toward heavier polyribosomes. This result indicates that the mutant protein retains its abil-
ity to associate with polyribosomes. In strains containing both mutant and wild-type pro-
teins, it is therefore possible that the mutant protein competes with the wild-type protein 
for ribosome association. In addition, evidence from two-hybrid studies suggests that 
Upf1p homodimers may form, although the strength of the interaction was low (25). If 
homodimers form, then mutant/wild-type hybrids could form such that increasing the pro-
portion of mutant subunits might lead to the observed dominant negative effects. 
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In this paper, we show that a portion of each of the three proteins found in soluble ly-
sates codistributes in sucrose gradients in fractions containing polyribosomes. We find that 
each protein shifts along with polyribosomes into fractions containing 80 S ribosomal par-
ticles when lysates are treated with RNase A prior to fractionation. This indicates that the 
codistribution of the proteins most likely reflects association with polyribosomes. We stud-
ied these associations further by determining whether disruptions of the UPF genes affect 
the distribution of the Upf proteins in sucrose gradients. Upf1p appears to associate with 
polyribosomes by a mechanism that does not depend on the other two proteins, although 
a minor proportion of Upf1p was released from polyribosomes in the absence of Upf2p. 
The most dramatic effects were observed when the distribution of Upf2p was monitored 
in sucrose gradients using lysates from strains in which either the UPF1 or UPF3 gene was 
disrupted. Disruption of UPF1 causes a shift in the distribution of Upf2p toward heavier 
polyribosomes. Disruption of UPF3 had the opposite effect, causing a major redistribution 
of Upf2p into low-density fractions devoid of ribosomes. 

The opposing effects resulting from disruption of UPF1 or UPF3 suggest that both pro-
teins are needed to establish or maintain the normal equilibrium for association/dissocia-
tion of Upf2p with polyribosomes. The absence of Upf1p appears to promote association 
of Upf2p with polyribosomes, suggesting that the presence of Upf1p favors release of 
Upf2p from polyribosomes. The absence of Upf3p, which is present at limited concentrations, 
may cause the release of Upf2p from polyribosomes or may prevent association, suggesting 
that the presence of Upf3p is required for the association of Upf2p with polyribosomes. 

These results are consistent with the notion derived from two-hybrid interactions that 
Upf2p could form a bridge between Upf1p and Upf3p (17). We envision a model in which 
Upf1p associates with polyribosomes by an independent mechanism using contacts that 
do not require the presence of the other two proteins. Upf2p may associate with polyribo-
somes through unique contacts separate from interaction with Upf1p but in a manner that 
may be influenced by Upf1p or Upf3p. This suggests that Upf1p and Upf2p may be docked 
or anchored to polyribosomes through separate mechanisms. A scheme for binding and 
release of Upf2p mediated by the other two proteins is consistent with the data and would 
still allow for physical interactions that might occur on polyribosomes. 
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Notes 
 
1. The abbreviations used are NMD, nonsense-mediated mRNA decay; HA, hemagglutinin; mAb, 

monoclonal antibody. 
2. L. R. Schenkman, M. J. Lelivelt, R. Shirley, A. Ford, J. N. Dahlseid, and M. R. Culbertson, manu-

script in preparation. 
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