2,669 research outputs found

    An Improved Algorithm for Finding the Shortest Synchronizing Words

    Get PDF
    A synchronizing word of a deterministic finite complete automaton is a word whose action maps every state to a single one. Finding a shortest or a short synchronizing word is a central computational problem in the theory of synchronizing automata and is applied in other areas such as model-based testing and the theory of codes. Because the problem of finding a shortest synchronizing word is computationally hard, among exact algorithms only exponential ones are known. We redesign the previously fastest known exact algorithm based on the bidirectional breadth-first search and improve it with respect to time and space in a practical sense. We develop new algorithmic enhancements and adapt the algorithm to multithreaded and GPU computing. Our experiments show that the new algorithm is multiple times faster than the previously fastest one and its advantage quickly grows with the hardness of the problem instance. Given a modest time limit, we compute the lengths of the shortest synchronizing words for random binary automata up to 570 states, significantly beating the previous record. We refine the experimental estimation of the average reset threshold of these automata. Finally, we develop a general computational package devoted to the problem, where an efficient and practical implementation of our algorithm is included, together with several well-known heuristics

    Critical sets of the total variance of state detect all SLOCC entanglement classes

    Full text link
    We present a general algorithm for finding all classes of pure multiparticle states equivalent under Stochastic Local Operations and Classsical Communication (SLOCC). We parametrize all SLOCC classes by the critical sets of the total variance function. Our method works for arbitrary systems of distinguishable and indistinguishable particles. We also discuss the Morse indices of critical points which have the interpretation of the number of independent non-local perturbations increasing the variance and hence entanglement of a state. We illustrate our method by two examples.Comment: 4 page

    Can the initial singularity be detected by cosmological tests?

    Full text link
    In the present paper we raise the question whether initial cosmological singularity can be proved from the cosmological tests. The classical general relativity predict the existence of singularity in the past if only some energy conditions are satisfied. On the other hand the latest quantum gravity applications to cosmology suggest of possibility of avoiding the singularity and replace it with the bounce. The distant type Ia supernovae data are used to constraints on bouncing evolutional scenario where square of the Hubble function H2H^2 is given by formulae H2=H02[Ωm,0(1+z)m−Ωn,0(1+z)n]H^2=H^2_0[\Omega_{m,0}(1+z)^{m}-\Omega_{n,0}(1+z)^{n}], where Ωm,0,Ωn,0>0\Omega_{m,0}, \Omega_{n,0}>0 are density parameters and n>m>0n>m>0. We show that the on the base of the SNIa data standard bouncing models can be ruled out on the 4σ4\sigma confidence level. If we add the cosmological constant to the standard bouncing model then we obtain as the best-fit that the parameter Ωn,0\Omega_{n,0} is equal zero which means that the SNIa data do not support the bouncing term in the model. The bounce term is statistically insignificant the present epoch. We also demonstrate that BBN offer the possibility of obtaining stringent constraints of the extra term Ωn,0\Omega_{n,0}. The other observational test methods like CMB and the age of oldest objects in the Universe are used. We also use the Akaike informative criterion to select a model according to the goodness of fit and we conclude that this term should be ruled out by Occam's razor, which makes that the big bang is favored rather then bouncing scenario.Comment: 30 pages, 7 figures improved versio

    Photodegradation and biodegradation of poly(lactic) acid containing orotic acid as a nucleation agent

    Get PDF
    Orotic acid is a natural heterocyclic compound that acts as a nucleation agent in poly(lactic acid) (PLA). PLA materials with increasing orotic acid content were prepared and characterized. It was found that crystallinity of about 28% was reached with 0.3% content of the agent. Further enhancement in the content of the agent did not provoke any additional significant increase of crystallinity. Subsequently, it was investigated whether the orotic acid content affected photodegradation of PLA and, in the next phase, its biodegradation. The results of rheological measurements showed that the compound slightly accelerates photodegradation of the material, which was accompanied by the cleavage of PLA chains. Previous photodegradation was shown to accelerate the subsequent biodegradation by shortening the lag phase of the process, where the explanation is probably in the reduction of the polymer molecular weight during the photodegradation. Moreover, the presence of orotic acid in both initial and photodegraded samples was found to influence biodegradation positively by shortening the lag phase and increasing the observed maximal rate of the biodegradation. © 2019 by the authors.Tomas Bata University in Zlin, Internal Grant Agency [IGA/FT/2018/009, IGA/FT/2019/011

    Proximal Policy Optimization for Radiation Source Search

    Get PDF
    Rapid search and localization for nuclear sources can be an important aspect in preventing human harm from illicit material in dirty bombs or from contamination. In the case of a single mobile radiation detector, there are numerous challenges to overcome such as weak source intensity, multiple sources, background radiation, and the presence of obstructions, i.e., a non-convex environment. In this work, we investigate the sequential decision making capability of deep reinforcement learning in the nuclear source search context. A novel neural network architecture (RAD-A2C) based on the advantage actor critic (A2C) framework and a particle filter gated recurrent unit for localization is proposed. Performance is studied in a randomized 20×20 role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3e20×2020×20 m convex and non-convex simulation environment across a range of signal-to-noise ratio (SNR)s for a single detector and single source. RAD-A2C performance is compared to both an information-driven controller that uses a bootstrap particle filter and to a gradient search (GS) algorithm. We find that the RAD-A2C has comparable performance to the information-driven controller across SNR in a convex environment. The RAD-A2C far outperforms the GS algorithm in the non-convex environment with greater than 95% role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3e95%95% median completion rate for up to seven obstructions

    New brane solutions in higher order gravity

    Full text link
    We consider the higher order gravity with dilaton and with the leading string theory corrections taken into account. The domain wall type solutions are investigated for arbitrary number of space-time dimensions. The explicit formulae for the fixed points and asymptotic behavior of generic solutions are given. We analyze and classify solutions with finite effective gravitational constant. There is a class of such solutions which have no singularities. We discuss in detail the relation between fine tuning and self tuning and clarify in which sense our solutions are fine-tuning free. The stability of such solutions is also discussed.Comment: 22 pages, Latex, 3 figures; discussion of effective gravitational constant and of one type of solutions extended; references adde

    Quality of primary health care in Poland from the perspective of the physicians providing it

    Get PDF
    Background: Primary care (PC) allows patients to address most of their health needs and is essential for high quality healthcare systems. The aim of the study was to analyze the insight of nine core dimensions of Polish PC system: “Economic conditions”, “Workforce”, “Accessibility”, “Comprehensiveness”, “Continuity”, “Coordination”, “Quality of care”, “Efficiency” and “Equity” and to identify the characteristics of the providing physicians that influence their perception of the quality of care.Methods: A cross-sectional study was conducted as part of an international QUALICOPC project. In Poland a nationally representative sample of 220 PC physicians was selected from the database of Polish National Health Fund by a stratified random sampling procedure. The research tool was a standardized 64-item questionnaire. Each of the respondents’ answers were assigned a numerical value ranging from−1 (extremely negative) to +1 (extremely positive). The quality indicators were calculated as an arithmetic mean of variables representing particular PC dimensions.Results: The mean scores for the majority of the dimensions had negative values. Accessibility of care was perceived as the best dimension, while the economic conditions were evaluated most negatively. Only a small part of variation in quality evaluation could be explained by physicians’ characteristics.Conclusions: The negative evaluation of primary care reflects the growing crisis in the health care system in Poland. There is an urgent need to apply complex recovery measures to improve the quality of primary care

    The microbial production of polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation

    Get PDF
    © 2018 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/polym10090957Excessive levels of plastic waste in our oceans and landfills indicate that there is an abundance of potential carbon sources with huge economic value being neglected. These waste plastics, through biological fermentation, could offer alternatives to traditional petrol-based plastics. Polyhydroxyalkanoates (PHAs) are a group of plastics produced by some strains of bacteria that could be part of a new generation of polyester materials that are biodegradable, biocompatible, and, most importantly, non-toxic if discarded. This study introduces the use of prodegraded high impact and general polystyrene (PS0). Polystyrene is commonly used in disposable cutlery, CD cases, trays, and packaging. Despite these applications, some forms of polystyrene PS remain financially and environmentally expensive to send to landfills. The prodegraded PS0 waste plastics used were broken down at varied high temperatures while exposed to ozone. These variables produced PS flakes (PS1–3) and a powder (PS4) with individual acid numbers. Consequently, after fermentation, different PHAs and amounts of biomass were produced. The bacterial strain, Cupriavidus necator H16, was selected for this study due to its well-documented genetic profile, stability, robustness, and ability to produce PHAs at relatively low temperatures. The accumulation of PHAs varied from 39% for prodegraded PS0 in nitrogen rich media to 48% (w/w) of dry biomass with the treated PS. The polymers extracted from biomass were analyzed using nuclear magnetic resonance (NMR) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) to assess their molecular structure and properties. In conclusion, the PS0–3 specimens were shown to be the most promising carbon sources for PHA biosynthesis; with 3-hydroxybutyrate and up to 12 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units generated
    • 

    corecore