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Abstract: Rapid search and localization for nuclear sources can be an important aspect in preventing
human harm from illicit material in dirty bombs or from contamination. In the case of a single mobile
radiation detector, there are numerous challenges to overcome such as weak source intensity, multiple
sources, background radiation, and the presence of obstructions, i.e., a non-convex environment. In
this work, we investigate the sequential decision making capability of deep reinforcement learning
in the nuclear source search context. A novel neural network architecture (RAD-A2C) based on the
advantage actor critic (A2C) framework and a particle filter gated recurrent unit for localization is
proposed. Performance is studied in a randomized 20× 20 m convex and non-convex simulation
environment across a range of signal-to-noise ratio (SNR)s for a single detector and single source.
RAD-A2C performance is compared to both an information-driven controller that uses a bootstrap
particle filter and to a gradient search (GS) algorithm. We find that the RAD-A2C has comparable
performance to the information-driven controller across SNR in a convex environment. The RAD-
A2C far outperforms the GS algorithm in the non-convex environment with greater than 95% median
completion rate for up to seven obstructions.

Keywords: deep reinforcement learning; source search and localization; active search; gamma
radiation; source parameter estimation; sequential decision making; non-convex environment

1. Introduction

The advancement of nuclear technology has brought the benefits of energy production
and medical applications, but also the risks associated with exposure to radiation [1].
Radioactive materials can be used for dirty bombs, or might be diverted from its intended
use. Effective detection when these types of materials are present in the environment is
of the utmost importance and measures need to be in place to rapidly locate a source of
radiation in an exposure event to limit human harm [2]. Autonomous search methods
provide a means of limiting radiation exposure to human surveyors and can process a
larger array of information than humans to inform the search strategy. Additionally, these
techniques can operate in environments where limited radio communication would prevent
untethered remote-control of a robot such as the Fukushima Daiichi disaster [3].

Detection, localization, and identification are based upon the measured gamma-ray
spectrum from a radiation detector. Radioactive sources decay at a certain rate which,
with the amount of material, gives an activity, often measured in disintegrations per second
or becquerels [bq]. Most decays leave the resulting nucleus in an excited state, which may
lose energy by emitting specific gamma rays. With decay branching, not all decays might
emit one gamma ray, so to remove ambiguity, we look at the gamma rays emitted per
second [gps] instead of decays per second. Localization methods in the current work rely
upon the intensity in counts per second [cps] of the gamma photon radiation measured by
a single, mobile scintillation detector that is searching for the source and is composed of a
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material such as sodium iodide (NaI) [4]. Other localization techniques such as coded mask
aperture imaging or Compton imaging are also effective but are not applicable in the case
of a non-convex environment. The number of counts per second recorded by a detector
is related to the total photons emitted per second through a scaling factor determined by
detector characteristics. It is common to approximate each detector measurement as being
drawn from a Poisson distribution because the success probability of each count is small
and constant [4]. The size of the detector also affects count rates, with a larger detector
having a larger solid angle. The inverse square relationship, 1

d2 , is a useful approximation
to describe the measured intensity of the radiation as a function of the distance between the
detector and source, d. This nonlinear relationship paired with the probabilistic nature of
gamma-ray emission and background radiation from the environment leads to ambiguity
in the estimation of a source’s location.

In the case of a single mobile detector, there are numerous challenges to overcome.
Detectors deployed to smaller autonomous systems such as drones or robots have a smaller
surface area and volume resulting in poorer counting statistics per dwell time. Common
terrestrial materials such as soil and granite contain naturally occurring radioactive materi-
als that can contribute to a spatially varying background rate [4]. Far distances, shielding
with materials such as lead, and the presence of obstructions, can significantly attenuate
or block the signal from a radioactive source. We will refer to environments with obstruc-
tions as being non-convex, in line with the notion of convexity in set theory [5]. Further
challenges arise with multiple or weak sources. Given the high variation in these variables,
the development of a generalizable algorithm with minimal priors becomes quite difficult.
Additionally, algorithms for localization and search need to be computationally efficient
due to energy and time constraints. Figure 1 shows an example illustration of a mobile
robot performing active nuclear source search in a non-convex environment.

Figure 1. An autonomous mobile robot operating in a non-convex environment. The unshielded
gamma source emits gamma radiation isotropically. Obstructions (gray cubes) attenuate the gamma
radiation signal and block the robot’s path.

1.1. Machine Learning (ML)

ML is broadly concerned with the paradigm of computers learning how to complete
tasks from data. Reinforcement learning (RL) is a subset of ML focused on developing
a control policy that maximizes cumulative reward in an environment. Deep learning
(DL) is another subset of ML with an emphasis on approximating a function of interest
using a dataset and compositions of elementary linear and nonlinear functions. These
function compositions can be stacked in succession to create “layers”, thereby increasing
the complexity of functions of interest that can be approximated, and giving rise to the

robot 
Obstruction 
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term “deep” in DL. A key difference between RL and other subsets of ML is the process
of data acquisition. Learning in RL is dependent on data that is collected while the policy
is acting in the environment, thereby having a direct impact on the data collected in
the future. The majority of other ML techniques utilize datasets acquired before training.
The intersection of RL and DL has resulted in a framework called Deep reinforcement learning
(DRL). DRL uses deep neural networks to learn a control policy and approximate state
values through trial and error in an environment. While training of these networks is
computationally intensive, once the weights are learned, inference (the application of
a trained ML model) can be performed at lower computational cost. In this paper, we
investigate a branch of DRL known as stochastic, model-free, on-policy gradients and
assess its performance in the task of control in the radiation source search domain.

DRL has far surpassed human expertise in a myriad of other tasks, for example,
the board game Go, which has a state space of 10174 [6]. Since these algorithms learn
strictly through environmental interaction, they can discover and develop heuristics and
action trajectories that humans might never have considered in their algorithm design.
Radiation source search is a well studied problem , and there are many solutions provided
certain assumptions hold such as known background rate or environment layout. Data-
driven approaches have received less attention, in part, because of the high variability
of enivornmental parameters mentioned above. This paper demonstrates that DRL can
learn an effective policy that generalizes across a range of scenarios where background
rate, source strength and location, and the number of obstructions are varied.

1.2. Related Work

Many solutions have been proposed for nuclear source search and localization across
a broad range of scenarios and radiation sensor modalities. These methods are generally
limited to the assumptions made about the problem such as the background rate, mobility
of the source, shielding presence, and knowledge of obstruction layout and composition.
Morelande et al. present a maximum likelihood estimation approach and a Bayesian
approach to multi-source localization using multiple fixed detectors in an unobstructed
environment [7]. Hite et al. also use a Bayesian approach with Markov chain Monte Carlo
to localize a single point source in a cluttered urban environment by modeling the radiation
attenuation properties of different materials [8]. Hellfeld et al. focused on a single detector
in 3D space moving along a pre-defined path for single and multiple weak sources [9]. They
utilized an optimization framework with sparsity regularization to estimate the source
activity and coordinates.

There is great interest in autonomous search capabilities for source search to limit
human exposure to harmful radiation. Cortez et al. proposed and experimentally tested a
robot that used variable velocity uniform search in a single source scenario [10]. Ristic et al.
proposed three different formulations of information-driven search with Bayesian estima-
tion. An information-driven search algorithm selects actions that maximize the available
information for its estimates of user-specified quantities at each timestep. The first method
utilized a particle filter (Appendix B.1) and the Fisher information matrix (Appendix B.2) for
a single source and single detector in an open area with constant background [11]. The sec-
ond and third method both used the Renyi information divergence metric (Appendix B.3)
and particle filter to control a detector/detectors in convex/non-convex environments
with multiple sources, respectively [12,13]. In the non-convex environment, the layout was
considered to be known before the start of the search. Anderson et al. considered a single
mobile detector used for locating multiple sources in a non-convex environment through
an optimization based on the Fisher information and travel costs [14]. The obstruction
attenuation and nuclear decay models were specified by hand.

RL and DRL have also been applied to the control of single robots. Landgren used
a multi-armed bandit approach to control nuclear source search in an indoor environ-
ment [15]. This was implemented on a Turtlebot3 and used to find multiple radioactive
sources in a lab through radiation field sampling. Liu et al. used double Q-learning to
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control a single detector search for a single radioactive source with a varying sized wall in
simulation [16]. The model performed well when the test environment matched its training
set but did not generalize when new geometries were introduced and had to be retrained.
This approach is the most similar to the one used in this research.

In contrast to the majority of the methods mentioned above, our algorithm does
not directly rely on any hard-coded modeling assumptions for decision making. This
gives greater flexibility to our approach and allows the opportunity for generalization to
a greater variety of situations. For example, our approach was only trained on up to five
obstructions in an environment at any one time but can easily operate when greater than
five obstructions are present. Additionally, it would be relatively simple to retrain the agent
to account for a moving source or novel obstruction types and layouts, among other things.
This comes with the caveat that there is a heavy reliance upon the assumptions made in
modeling an environment that are likely to fail in capturing the intricacies of reality (reality
gap). This is an area of intense interest in the DRL research space [17].

1.3. Contributions

The main contributions of this paper are an on-policy, model-free DRL approach
to radiation source search, a novel neural network architecture, the RAD-A2C, and an
open-source radiation simulation for convex and non-convex environments. Our approach
will be evaluated in the context of single detector search for a single radiation source in a
simulated 2D environment with variable background radiation, variable source intensity
and location, variable detector starting position, and variable number of obstructions.
The RAD-A2C will be compared against a modified information-driven search algorithm
previously proposed in the nuclear source search literature and a gradient search algorithm
in a convex environment across signal-to-noise ratio (SNR)s. We will examine the effect of
obstructions on the RAD-A2C performance in a non-convex environment with comparison
to a gradient search algorithm across SNRs.

2. Materials and Methods
2.1. Radiation Source Search Environment

The radiation source search environment was fundamental to the training of the policy.
The development of the environment required many careful design decisions in an attempt
to provide a useful proof of concept for the efficacy of DRL in practical radiation source
search contexts. In the remainder of the paper, we assume that a gamma radiation source
has already been detected through some other means and the objective is to now locate
it. We also assume an isotropic detector and a constant background rate per environment.
An episode is defined to be a finite sequence (successfully completed or the maximum
number of timesteps was reached) of observations, actions, and rewards in an environment.

2.1.1. Partial Observability

In the context of the radiation search scenario where measurements are noisy and un-
certain, it is useful to describe the partially observable Markov decision process (POMDP). The fi-
nite POMDP is defined by the 6-tuple 〈S ,Z ,A,R, Ω, T 〉 at each time step, n. S ,Z ,A,R
are the finite sets of states, state measurements, actions, and rewards, respectively. A state,
sn ∈ S , corresponds to all the components of the environment, some fully observable
such as the detector location and range sensor measurements, and others, hidden, such
as source activity and source location. A state measurement, zn ∈ Z , is the detector’s
measurement of the radiation source governed by the state measurement probability dis-
tribution, Ω, equivalent to Equation (3). A state measurement is a function of the true
state but is not necessarily representative of the true state due to the stochastic nature
of the environment. An action, an ∈ A, determines the direction the detector will be
moved. The reward, rn ∈ R, corresponds to a scalar value determined by the reward
function defined in Equation (4). The state transition density, T , is unity in our context
as the state components only change deterministically. An observation, on, denotes the
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vector containing the fully observable components of the state sn and state measurement
zn. Figure 2 shows the POMDP for an episode consisting of the observation, action, reward
loop that continues until the episode termination criteria is met.

Figure 2. At every timestep (n + 1), the agent receives an observation on+1 and reward rn+1. The ob-
servation consists of the fully observable state components and the state measurement, zn+1, that
is conditioned on the state sn+1. The observation only gives partial information about the state.
The state transition and the reward depend on taking action an in state sn.

A history is a sequence of observations up to timestep n, that is defined as Hn =
(o0, o1, ..., on−1, on). A successful policy needs to consider Hn to inform its decisions since
a single observation does not necessarily uniquely identify the current state. This can
be implemented directly by concatenation of all previous observations with the current
observation input or through the use of the hidden state, hn, of a recurrent neural network
(RNN). The sufficient statistic M(Hn) is a function of the past history and serves as the basis
for the agent’s decision making [18]. In this work, hn = Mρ(Hn), where ρ denotes a RNN
parameterization. This allows the control policy to be conditioned on hn as πθ(an+1|hn) =
p(an+1, Mρ(Hn); θ), where p is some probability distribution, θ is some neural network
parameterization, and an+1 is the next action. Our parameterization θ was a two layer
perceptron with hyperbolic tangent activation functions after the first layer only. The
distribution p was selected to be multinomial as the set of actions was discrete. A Gaussian
distribution can be used in the case of a continuous action space.

2.1.2. Gamma Radiation Model

Gamma radiation measured by a detector typically comes in two configurations, the to-
tal gamma-ray counts or the gamma-ray counts in specific peaks. The full spectrum is more
information rich as radiation sources have identifiable photo-peaks but is more complex
and computationally expensive to simulate. Thus, our localization and search approach
uses the gross counts across the energy bins. Cesium-137 was selected as the source of
interest since it is commonly used in industry applications and is fairly monoenergetic [19].
As we are not performing spectroscopic discrimination, our value to describe source in-
tensity Is is just gamma rays emitted per second [gps] with the generous assumption of
100% detector efficiency across the spectrum. We denote the parameter vector of interest as
x = [Is, xs, ys], where xs, ys are the source coordinates in [m]. These quantities are assumed
to be fixed for the duration of an episode. An observation at each timestep, n, is denoted
as on, and consists of the measured counts, zn, detector position denoted [xn, yn], and 8
obstruction range sensor measurements for each direction of detector movement. This
modeled some range sensing modality such as an ultrasonic or optical sensor. The maxi-
mum range was selected to be 1.1 m to allow the controller to sense obstructions within
its movement step size. The range measurements were normalized to the interval [0, 1],
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DRL agent’s decision making during an episode. The reward function for the convex and
non-convex environment is as follows,

rn+1 =

{
0.1 if ψn+1 < min ψn,
−0.5 ∗ ψn+1

Dsearch
otherwise.

(4)

Here, the source-detector shortest path distance is defined as ψ, and Dsearch defines the
largest Euclidean distance between vertices of the search area. The shortest path distance
is essential for the non-convex environment and becomes the Euclidean distance when
there is LOS due to the visibility graph implementation. The normalization factor, Dsearch,
in the negative reward provides an implicit boundary to the search area. This reward
scheme incentivizes the DRL agent to find the source in the fewest actions possible as
the negative reward is weighted more heavily. The reward magnitudes were selected so
that standardization was not necessary during the training process as mean shifting of the
reward can adversely affect training [21].

The reward function was designed to provide greater feedback for the quality of an
action selected by the DRL agent in contrast to only constant rewards. For example, in the
negative reward case, if the DRL agent initially takes actions that increase ψn+1 above the
previous closest distance for several timesteps and then starts taking actions that reduce
ψn+1, the negative reward will be reduced as it has started taking more productive actions.
This distance-based reward function gives the DRL agent a more informative reward signal
per episode during the learning process. Figure 4 shows an episode of the DRL agent
operating within the environment, the radiation measurements it observes, and the reward
signal it receives.
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Figure 4. Key data streams used by the DRL agent in training and inference. (a) shows the detector position at each timestep
as it moves closer to the source. (b) shows the radiation counts measurements at each timestep corresponding with the
detector position. (c) shows the cumulative reward signal that the DRL agent uses during training. The reward signal is
only used for weight updates after all episodes in an epoch have been completed.

2.1.4. Configuration

Detector step size was fixed at 1 m/sample and the movement direction in radians was
limited to the set, U = {i ∗ π

4 : i ∈ [0, 7]}. The DRL implementation can easily be adapted
to handle more discrete directions and variable step sizes or even continuous versions of
these quantities. These two constraints were made to limit the computational requirements
for the comparison algorithm. Maximum episode length was set at 120 samples to ensure
ample opportunity for the policy to explore the environment, especially in the non-convex
case. Episodes were considered completed if the detector came within 1.1 m of the source or
a failure if the number of samples reached the maximum episode length. The termination
distance was selected to cover a range of closest approaches as the detector movement
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directions and step size are fixed. The state space has eleven dimensions that include
eight detector-obstruction range measurements for each movement direction, the radiation
measurement, and the detector coordinates. If the policy selected an action that moved the
detector within the boundaries of an obstruction, then the detector location was unchanged
for that sample. Table 1 shows the parameters used for the environment simulation.

Table 1. Radiation source simulation for convex and non-convex environment parameters. The brack-
ets indicate an interval that was uniformly sampled on a per epoch basis. Src. and det. are
abbreviations for source and detector, respectively.

Parameter Value

Area Dimensions 20× 20 m
Src., det. initial positions [0, 20] m

Src. rate [1× 106, 1× 107] gps
Background rate [10, 50] cps

State space 11
Action space 8

Max. search time 120 samples
Velocity 1 m/sample

Termination dist. 1.1 m
Min. src.-det. initial dist. 10 m
Number of obstructions [1, 5]

Obstruction dim. [2, 5] m

2.2. Reinforcement Learning (RL)
2.2.1. Background

The aim of RL is to maximize the expectation of cumulative reward over an episode
through a policy learned by interaction with the environment. In this work, the policy,
π(an+1|sn), is a stochastic mapping from states to actions that does not rely on estimates
of the state value as required in methods such as Q-learning. We consider radiation
source search to be an episodic task which dictates that the episodes are finite and that the
environment and agent are reset according to some initial state distribution after episode
completion. The cumulative reward starting from any arbitrary time index is defined as,

R̂n =
N−1

∑
n′=n

γn−n′rn′ . (5)

where N is the length of the episode and γ ∈ [0, 1) is the discount factor. This definition
gives clear reward attribution for actions at certain timesteps and the total episode reward
results when n = 0. The expected return of a policy over a collection of histories is then
defined as,

J(π) =
∫

H
p(H|π)R̂0(H)δH, (6)

where R̂0(H) denotes the cumulative reward for a history H and p(H|π) is the probability
of a history occurring given a policy.

The agent learns a policy from the environment reward signal by updating its value
functions. The value function, Vπ(hn), estimates the reward attainable from a given hidden
state that gives the agent a notion of the quality of its hidden state [22]. This is also a means
of judging the quality of a policy, as the value is defined as the expected cumulative reward
across the episode when starting from hidden state hn and acting according to policy π
thereafter or more succinctly,

Vπ(hn) = Ehn+1 :N−1,
an :N−1

[R̂n|h0 = hn]. (7)
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The temporal difference (TD) error is a method of generating update targets for the value
function from experiences in the environment [23]. The TD error is defined using the value
function as,

δn = rn + Vπ(hn+1)−Vπ(hn). (8)

If a value function approximator is correctly predicting the value of a hidden state,
then the TD error should be close to 0. Otherwise, the value function approximation must
be updated to minimize this error. Prior to the application of DL to RL, policies and value
functions took the form of lookup tables or other function approximations such as tile
coding [22].

On policy, model-free DRL methods require that the agent learns a policy from its
episodic experiences throughout training, whereas model-based methods focus on us-
ing a learned or given model to plan action selection. On policy methods are worse in
terms of sample efficiency than Q-learning because the learning takes place in an episodic
fashion, i.e., the policy is updated on a set of episodes and these episodes are then dis-
carded. The benefit being that the agent directly optimizes policy parameters through the
maximization of the reward signal. The decision to use model-free policy gradients was
motivated by the stability and ease of hyperparameter tuning during training. Specifically,
we used a variant of the advantage actor-critic (A2C) framework called PPO.

2.2.2. Proximal Policy Optimization (PPO)

The actor, πθ , and critic, Vφ, are the two main components of the A2C where θ, φ
denote separate neural network parameterizations. The critic approximates the value
function, Vπ , by regressing the hidden state onto a cumulative reward prediction. We
also use an RNN, parameterized by ρ, to encode the observations over time in the hidden
state, hn, as specified in Section 2.1.1. The actor serves as the policy and at each timestep,
calculates a distribution over actions defined as,

πθ(an+1|hn) ∼ multi(|U |, softmax(WT
Ahn + bA)), (9)

where WA and bA are the matrix of neural network weights and a vector of biases for the
actor, respectively. The softmax(·) is the softmax function that transforms the network
outputs to the interval [0, 1] and multi(·) is the multinomial distribution. The critic is
utilized in the policy weight update as an approximation to the value function.

Schulman et al. propose the following generalized advantage estimator (GAE) with
parameters γ, κ to control the bias-variance tradeoff,

ÂGAE(γ,κ)
n =

N−1

∑
n′=0

(κγ)n′δn+n′ , (10)

where δn+n′ is the TD error as defined in Equation (8). This is an exponentially-weighted
average of the temporal differences error where γ determines the scaling of the value
function that adds bias when γ < 1 and κ that adds bias when κ < 1 if the value function
is inaccurate [24]. The weights for the policy are updated by taking the gradient of
Equation (6) yielding,

∇θ J(πθ) = EH [
N−1

∑
n=0
∇θlog πθ(an+1|hn)ÂGAE(γ,κ)

n ]. (11)

A common issue in policy gradient methods is the divergence or collapse of policy
performance after a parameter update step. This can prevent the policy from ever con-
verging to the desired behavior or result in high sample inefficiency as the policy rectifies
the performance decrease. Schulman et al. proposed the PPO algorithm as a principled
optimization procedure to ensure that each parameter update stays within a trust-region of
the previous parameter iterate [25]. We chose to use the PPO-Clip implementation of the
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trust-region because of the strong performance across a variety of tasks, stability, and ease
of hyperparameter tuning as shown in [25,26].

The PPO-Clip objective is formulated as,

Lclip(θk+1, θk, ρ) = EH [En[min(gn(θk+1, θk)Ân, clip(gn(θk+1, θk), 1− ε, 1 + ε)Ân)]], (12)

where k denotes the epoch index and ρ is implicit in the hidden state. Here, gn(θk+1, θk)

=
πθk+1

(an+1|hn)

πθk
(an+1|hn)

, denotes the probability ratio of the previous policy iterate to the proposed

policy iterate and ε is the clipping parameter that enforces a hard bound on how much the
latest policy iterate can change in probability space reducing the chance of a detrimental
policy update. A further regularization trick is early-stopping based on the approximate
Kullback-Leibler divergence. The approximate Kullback-Leibler divergence is a measure of
the difference between two probability distributions and the approximation is the inverse
of gn(θk+1, θk) in log space. If the approximate Kullback-Leibler divergence between the
current and previous iterate over a batch of histories exceeds a user-defined threshold, then
the parameter updates over that batch of histories are skipped.

The value function network parameters are updated on the mean square error (MSE)
loss between the value function estimate and the empirical returns,

Lval(φ, ρ) = EH,R̂n
[(Vπ

φ (hn)− R̂n)
2], (13)

The total loss is then defined as

Ltotal(θk+1, θk, φ, ρ) = −Lclip + c ∗ Lval, (14)

where c is a weighting parameter. Gradient ascent is performed on this loss to find the set
of network parameters that maximize the expected episode cumulative reward.

2.3. RAD-A2C
2.3.1. Gated Recurrent Unit (GRU)

The GRU architecture proposed by Cho et al. is a subset of the recurrent neural network
(RNN)s family that use gates to address the vanishing and exploding gradients encountered
when using backpropagation-through-time and increase the network’s ability to establish
dependencies across long temporal gaps [27]. The following set of equations describe the
GRU operations,

ũn+1 = σ(WT
ũ [on+1, hn] + bũ),

r̃n+1 = σ(WT
r̃ [on+1, hn] + br̃),

h̃n+1 = tanh(WT
h̃ [on+1, r̃n+1 � hn] + bh̃),

hn+1 = (1− ũn+1)� hn + ũn+1 � h̃n+1,

(15)

where σ(·) is the sigmoid activation function, b̃ is the bias term associated with each
weight matrix, tanh(·) is the hyperbolic tangent activation function, [·] denotes vector
concatenation, and � is the Hadamard product. The GRU has more parameters than the
standard RNN but the gain is in training stability and the increased range for sequence
relationships.

Figure 5 shows the design of a single GRU cell recreated from Olah [28]. Each box
represents a weight matrix and activation function and the circles represent mathematical
operations. The conjoining lines represent the concatenation of the quantity and diverging
lines represent the copying. The crux of the reset (r̃n) and update (ũn) gates are to modify
the candidate hidden state (h̃n), which then becomes the output hidden state (hn). The reset
gate determines how much of the previous hidden state to factor into the new hidden state
and the update gate determines the convex combination of the previous hidden state and
the candidate hidden state. This cell is a drop-in replacement for the hidden state hn found
in Figure 5a.
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(a) RNN sequential inputs. (b) GRU architecture.
Figure 5. (a) shows the input flow for an RNN where each on is fed to the network sequentially. The learned weight matrices
Who, Wih, Whh are the same across all sequence steps so the only changes are the input, output and hidden state. The hn

represents the hidden state which is passed between sequence steps and is combined with the input to carry information
across time. The output, an, is mapped from the hidden state. (b) shows the GRU architecture, a variation on the hn

in (a). Each box represents a weight matrix and activation function and the circles represent mathematical operations.
The conjoining lines represent concatenation of the quantity and diverging lines represent the copying. The crux of the reset
(r̃n) and update (ũn) gates are to modify the candidate hidden state (h̃n) which then becomes the output hidden state (hn).
Recreated from [28].

2.3.2. Architecture

The RAD-A2C is composed of a particle filter gated recurrent unit (PFGRU) proposed by
Ma et. al [29] (Appendix A.1), one GRU module to encode the observations over time for
action selection, and three linear layers. The model was implemented using the PyTorch
library [30]. At each timestep, the observation is propagated to both the PFGRU and the
A2C modules. The PFGRU uses a linear layer to regress its mean “particles” onto a source
location, which is concatenated with the observation and fed into the A2C. The Actor layer
regresses the GRU hidden state onto a multinomial distribution over actions using a softmax
function. The Critic layer regresses the hidden state onto a value prediction. This value
prediction is only necessary for the training phase and has no direct impact during inference.
Figure 6 shows the RAD-A2C architecture and the flow of information through the system.
The dotted lines indicate the path of the error gradients for backpropagation during training.
Appendix A.2 covers implementation and training details and Table A1 shows the selected
hyperparameters. The code is available at https://github.com/peproctor/radiation_ppo
last accessed on 27 September 2021.

The RAD-A2C is easily extendible to other source search scenarios such as a 3D
environment, moving sources, using more advanced radiation transport simulators, and se-
lection of detector step size and dwell time. These variations would only require a change
in the dimensions of the input and output of the model, a potential increase in the hidden
state size, and an appropriate update of the simulation environment/reward function. This
is a major advantage of DRL as compared to human-specified algorithms. The downside
of DRL is the long and computationally intense training costs and sensitivity to hyperpa-
rameters. A weakness of our RAD-A2C implementation is that the source intensity is not
predicted by the PFGRU as this would require prior knowledge about the upper limit of
the intensity. We opted for scenario generalization by performing search without a source
intensity estimate. While source intensity is of interest in radiation source localization
scenarios, an additional estimator such as least squares fitting could be used in conjunction
with our model for this end.

---+ 

wiJ 
G 

https://github.com/peproctor/radiation_ppo


J. Nucl. Eng. 2021, 2 379

Figure 6. RAD-A2C source search architecture. The PFGRU provides a location prediction, denoted (x̂s, ŷs), at each timestep,
which is concatenated with the observation and fed into the A2C. The GRU module encodes the observations over time
in its hidden state and the Actor layer selects an action from this hidden state. The Critic layer predicts the expected
cumulative reward from the hidden state and is only needed during training. The dotted lines indicate the gradient flow
during backpropagation.

2.4. Evaluation

Appendix B details the information-driven control algorithm (RID-FIM) and Appendix C
details the gradient search (GS) control algorithm used as comparisons against our method. All
search methods were evaluated across a range of SNRs in the convex environment. Only the
RAD-A2C and GS were compared in the non-convex environment as the bootstrap particle filter
(BPF) measurement and process model do not account for obstructions. Ristic et al. used an
approach similar to the RID-FIM in a non-convex environment, however, their implementation
was given the environment layout and the material attenuation coefficients [13]. We define the
signal-to-noise ratio (SNR) as,

SNR =
Is/D2

init + λb

λb
, (16)

where Dinit is the initial Euclidean distance between the source and detector positions.
Equation (16) was also used for the non-convex environments to maintain consistency
even though it is not strictly true. The SNR groups were broadly grouped into “low”
(1.0–1.2), “medium” (1.2–1.6), and “high” (1.6–2.0) intervals. For each SNR and number
of obstructions, 1000 different environments were uniformly randomly sampled to create
a fixed test. Monte Carlo simulations were performed for all experiments to determine
the average performance of the algorithms. Each algorithm performed 100 runs per
sampled environment.

2.4.1. Metrics

Weighted median completed episode length and median percent of completed episodes
served as the main performance metrics. The weighted median was used for the completed
episode length with a weighting factor between 1–100, determined by the number of Monte
Carlo simulations that were completed by the agent per environment. The completed
episode length corresponds to the number of radiation measurements required to come
within the episode termination distance of the source before the maximum episode length
is reached. This quantifies the agent’s effectiveness in incorporating the measurements to
inform exploration of the search area. Percent of episodes completed is the more important
metric as the priority in radiation source search is mission completion and this works
in tandem with the completed episode length to characterize the agent’s performance.

MSE 

Linear (is, Ys) 

On A2.C 

Actor 

GRU RL Loss 

Critic 
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An ideal agent would have a low median episode length and a high median percent of
episodes completed.

2.4.2. Experiments

Three sets of experiments were run in the radiation source search environment to
assess the performance characteristics of our proposed RAD-A2C architecture. The first set
of experiments focused on the comparison of all of the search algorithms. The second set of
experiments assessed the RID-FIM and A2C action selection quality with BPF performance
as a proxy. The final set of experiments looked at the performance of the GS and RAD-A2C
in a non-convex environment where the number of obstructions was varied.

3. Results and Discussion
3.1. Convex Environment
Detector Path Examples

Three detector paths for the RAD-A2C, the RID-FIM, and the GS in two different SNR
configurations of the convex environment are shown in Figure 7a,b.
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(a) High SNR configuration.
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Figure 7. Three detector paths for the RAD-A2C, the RID-FIM, and the GS in high and low SNR configurations of the
convex environment overlayed on a single plot. (a) shows a low SNR configuration and (b) shows a high SNR configuration.
The green square denotes the detector starting position and the red star represents the radiation source.Triangles denote the
detector position and point in the direction of the detector movement. A star-like marker results from the detector traveling
to a position multiple times. In both cases, the stochastic nature of gamma radiation measurement results in the control
algorithms taking sub-optimal actions before the source could be located.

The source prediction marker was omitted to reduce clutter. The algorithms must
explore the area as they search for radiation signal above the noise floor. In the high SNR
configuration, the algorithms make sub-optimal decisions that move the detector away
from the source, a result of the probabilistic nature of the measurement process. However,
the RAD-A2C and RID-FIM quickly adjust and successfully find the radiation source.
The GS has to take more actions to pick up on a consistent gradient. In the low SNR case,
the GS leaves the bounds of the search area before eventually finding the radiation gradient,
ultimately running out of time before coming within the termination distance. The detector
starts much further from the source in the low SNR configuration and the controllers select
many more actions before picking up any signal. In both scenarios, the RID-FIM makes
more diagonal movements relative to the RAD-A2C.

I ·~ -·► +- -►·- 1 - ►-" 
,t [>- -◄ - · 

1 11·-◄ .. ~ 
, .. _. 

. T' p-. .. 
,.. 
~- ►- r 

I,. ,► .. + 
►-, .►. -... 

"i .. 'A 
·~ .. .__ ,>.,, ' .. 

.. 'I' 
' .. I ,. T . l 

" ', .. ► ◄ T 

► I' T 

- ◄' ',- ... - I .. ~"'f .. I 
T -

I ► ... ~ ' t ► ,.._,, ,,. 
' i ► 

l'r 
► -.,,, 

11\,. i" •', _,._, 
·◄--◄-- - ◄ - ◄ -

I T ► 
► ◄ 

" _,h .... 
;. T-" .. ◄ 

... , 
' +' ll, .. ~ 

►- " ► 

~ .... 

LJ 
I' ... - . - ' 

► .. ◄ ,1 
~ -

~~· * 
:.t~ 

I • ', . 
To .. _. -◄ - ◄ - f◄- -+ -◄ 

- "' 
II 
. 
■ 



J. Nucl. Eng. 2021, 2 381

3.2. Performance

Box plots for the completed episode percentage and completed episode length for all
methods in the convex environment are found in Figure 8a,b, respectively. The median is
denoted in red, the boxes range from the first to the third quartile and the whiskers extend
to the 2.5th and 97.5th percentiles. GS achieved the shortest episode completion length for
all experiments at high SNR but performance decreased swiftly at the lower SNR levels.
The RID-FIM had a consistent performance with tight boxes for both metrics at all SNR
groups. The RAD-A2C was the only algorithm to maintain 100% completion for all SNRs
with the tradeoff being the longest median episode length for all but one of the SNRs.
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(a) Completed episode percentage.
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(b) Completed episode length.
Figure 8. Box plots for the completed episode percentage and completed episode length against SNR in the convex
environment. The median is denoted in red, the boxes range from the first to the third quartile and the whiskers extend
to the 2.5th and 97.5th percentiles. Figure 8b shows the RID-FIM consistently found the source in a short amount of time
even as SNR decreased. Figure 8a shows the RAD-A2C was the only method that completed 100% of the episodes. GS
performance sharply declined for lower SNRs.

3.3. Discussion

The results indicate close search performance between the RID-FIM and RAD-A2C
algorithms in the convex environment. GS had the shortest episode completion length
at high SNR but this required 7 more measurements per action selection. The RAD-A2C
showed the best reliability in completing all of the episodes with a minimal spread in the
distribution of results but had a greater spread in the completed episode length even at the
highest SNR. The longer completed episode length of the RAD-A2C could be due to learned
behavior that is advantageous in non-convex environments as the training environment
always had obstructions present. The RID-FIM had a tighter and lower distribution of
completed episode lengths across the SNRs.

Completion of episodes is the priority in practice as this will eliminate the threat
of human harm from nuclear materials. Both algorithms get the job done effectively,
however, the RID-FIM has a slightly greater chance of failing when SNR conditions are poor
compared with the RAD-A2C. The RID-FIM utilized perfect knowledge of the background
rate, which is a reasonable assumption in this particular source search context, however,
its performance is likely to be degraded to some degree when it must also estimate an
unknown background rate. The RAD-A2C did not receive the true episode background rate
directly but did have prior exposure to the interval of background rates through training.
Additionally, the RAD-A2C input standardization performs a moving average filter on the
radiation measurement inputs (see Appendix A.2).
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3.4. BPF Comparison

The RID-FIM and A2C controller are compared directly by replacing the PFGRU in
the RAD-A2C with the BPF. This new system will be denoted as BPF-A2C in the following
plots. Swapping in the BPF for the PFGRU facilitates in-depth analysis of the controllers
through the lens of the BPF performance. The estimator performance depends entirely on
the quality of action selection throughout an episode as this determines what information
the estimates will be based on. Thus, we compare the RMSE for the Euclidean distance
between the actual and predicted source location at each timestep for three different episode
completion lengths across SNR. The BPF utilizes the current and previous observations
(through the particle weights) to make a source location prediction. This comparison
reveals the advantage of the A2C that uses both the BPF source location prediction and the
current and previous observations (encoded in the hidden state) to inform action selection.
In contrast, both the RID (Equation (A16)) and FIM (Equation (A13)) only utilize the source
location prediction to inform action selection.

Figures 9–11, show the RMSE and posterior Cramér-Rao lower bound (PCRB) for the RID-
FIM and the BPF-A2C for three different completed episode lengths across SNRs. The PCRB
serves as a proxy for the sub-optimality of the controllers because of the use of the same
estimator (see Appendix B.5). Each plot is averaged over at least 200 different episodes and
at least 700 total runs. An episode was only considered for this analysis if the completed
episode length was the same for both algorithms in the set of the Monte Carlo runs for that
episode ensuring that RMSEs and PCRBs were only averaged over the same set of episodes
(same set of environment conditions). This gives a Bayesian Monte Carlo estimate on the
estimator RMSE over the distribution of initial environment arrangements [31].

These specific completed episode lengths were chosen to highlight a variation in
estimator performance. The RMSE for the RID-FIM is lower or equal to the BPF-A2C at a
completed episode length of 17 across SNR. This changes for a completed episode length
of 20 where the RID-FIM RMSE is only lower than the BPF-A2C at the lowest SNR. For the
completed episode length of 28, the BPF-A2C now has a lower RMSE than the RID-FIM
for all SNRs. In all of the plots, the PCRB for the BPF-A2C is slightly lower or equal to the
PCRB for the RID-FIM. The PCRB decreases at a faster rate for the high SNR compared to
the low SNR. Estimator RMSE consistently approaches the PCRB by the end of an episode.
The RMSE initially increased for the high SNR in direct relation with the completed episode
length in all the RMSE plots shown.
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Figure 9. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 17. Each plot contains the BPF PCRB and RMSE for the RID-FIM and A2C controllers averaged over at
least 200 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a lower RMSE
than the BPF-A2C for the low and medium SNR but the RID-FIM’s action selection was solely dependent on potentially
spurious BPF state estimates, which caused the BPF-A2C to match the RID-FIM performance at the high SNR.
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(b) Medium.
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Figure 10. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 20. Each plot contains the BPF PCRB and RMSE for the RID-FIM and A2C controllers averaged over at
least 400 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a lower RMSE
than the BPF-A2C for the low SNR but the RID-FIM’s action selection was solely dependent on potentially spurious BPF
state estimates, which caused the BPF-A2C to outperform the RID-FIM at medium and high.
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(b) Medium.
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Figure 11. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 28. Each plot contains the BPF PCRB and RMSE for the RID-FIM and A2C controllers averaged over at
least 650 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The BPF-A2C has a lower RMSE
than then RID-FIM when the completed episode length was longer due to the RID-FIM’s action selection dependence on
potentially spurious BPF state estimates.

3.5. Discussion

The BPF serves as an interesting comparison point between the A2C and RID-FIM
controllers. When the completed episode length was short (<16 samples), the RID-FIM
location prediction RMSE was lower than the BPF-A2C and closer to the PCRB at all SNRs.
This evidences the effectiveness of information-driven search schemes and the near-optimal
performance of the RID-FIM when the BPF does not make spurious estimates. However,
the occurrence of the intersection point of the RMSE curves highlights the disadvantage
of the RID-FIM’s reliance on the estimator for action selection. If early state estimates are
incorrect, this leads the RID-FIM to take more sub-optimal actions until the estimate is
corrected. This is evidenced by the longer completed episode lengths (20, 28) that have a
greater initial increase in the RMSE as seen in Figures 10c and 11c. Interestingly, the higher
SNR contributes a sharper increase, likely due to the strong radiation measurements being
interpreted by the BPF as evidence for the incorrect estimate.

In contrast, the A2C module of the BPF-A2C selects its actions from the location pre-
diction and the measurement directly. Thus, when the SNR is high, the RMSE intersection
point occurs at an earlier completed episode length (17 samples) because the A2C factors
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in measurement information at each timestep, rather than strictly following the possibly
incorrect location prediction as the RID-FIM must do. This also explains why the BPF-A2C
has lower RMSE at longer completed episode lengths as seen in Figure 11. The intersection
point occurred at longer completed episode lengths for lower SNR because it takes the
A2C longer to come across informative measurements that can correct the spurious BPF
state estimates.

3.6. Non-Convex Environment
Detector Path Examples

Two detector paths for the RAD-A2C and the GS in two non-convex environments
with three and seven obstructions are shown in Figure 12a,b, respectively.
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(a) Three obstructions.
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Figure 12. Two detector paths for the RAD-A2C and the GS overlayed on a single plot for the non-convex environment.
(a) shows the three obstruction environment and (b) shows the seven obstruction environment. The green square denotes
the detector starting position, the gray rectangles represent obstructions that block radiation propagation, and the red star is
the radiation source. Triangles denote the detector position and point in the direction of the detector movement. A star-like
marker results from the detector traveling to a position multiple times. Both algorithms must explore the area as they search
for radiation signal above the noise floor.

The source prediction marker was omitted to reduce clutter. The GS takes many more
samples to find a radiation gradient in the three obstruction environment but eventually
finds the source. Gradient information is extremely sparse in the seven obstruction envi-
ronment and thus the GS only moves randomly. The RAD-A2C can avoid the obstructions
and find the source in both situations, even moving diagonally between two obstructions
in Figure 12b. As in the convex environment, the majority of the RAD-A2C movements are
in the cardinal directions.

3.7. Performance

Box plots for the episode completion percentage and completed episode length against
SNR for both methods in the non-convex environment are found in Figures 13 and 14,
respectively. Figures 13a and 14a are results with one obstruction, Figures 13b and 14b
are results with three obstructions, Figures 13c and 14c are results with five obstructions,
and Figures 13d and 14d are results with seven obstructions. The median is denoted in red,
the boxes range from the first to the third quartile and the whiskers extend to the 2.5th and
97.5th percentiles.
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Figure 13. Box plots for the completed episode percentage against SNR in the non-convex environment, where each
plot corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes
range from the first to the third quartile and the whiskers extend to the 2.5th and 97.5th percentiles. (a) was for a single
obstruction, (b) was for three obstructions, (c) was for five obstructions, and (d ) was for seven obstructions. GS episode
completion deteriorates with increasing number of obstructions while the RAD-A2C maintains greater than 95% median
episode completion.

Across obstruction number, the RAD-A2C maintains above 95% episode completion
even at low SNR. The distribution of the RAD-A2C episode completion gets larger as the
number of obstructions increases. GS has >85% episode completion when there are less
than 7 obstructions at high SNR but sees a sharp decrease in performance as the SNR level
decreases. Even at high SNR, GS only completes 77% of episodes when 7 obstructions
are present. GS also has significant spread in the first and third quartile for most of
the completed episode non-convex experiments. The RAD-A2C median for completed
episode length increases by approximately 10 samples from a single obstruction to seven
obstructions. The first and third quartiles for completed episode length also increase as the
number of obstructions increase.
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Figure 14. Box plots for the completed episode length against SNR in the non-convex environment, where each plot
corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes range from
the first to the third quartile and the whiskers extend to the 2.5th and 97.5th percentiles. (a) was for a single obstruction,
(b) was for three obstructions, (c) was for five obstructions, and (d) was for seven obstructions. The RAD-A2C maintains a
low completed episode length across the varying number of obstructions and SNR while GS performance deteriorates.

3.8. Non-Convex Environment

The results showcase the strong performance of the RAD-A2C in the non-convex
environment. Surprisingly, the episode completion percentage did not decrease substan-
tially in the seven obstruction configuration and the median completed episode length did
not increase drastically. This demonstrates the algorithm’s ability to generalize as it was
only trained on up to five obstructions per environment. The RAD-A2C is not simply a
gradient search algorithm as the non-convex environment has many areas with no gradient
information as evidenced by the ineffectiveness of the GS. Overall, these results support
our hypothesis that the RAD-A2C is an effective search algorithm for both convex and
non-convex environments.

4. Conclusions and Future Work

This paper investigated the efficacy of PPO and our proposed DRL architecture,
the RAD-A2C, for a convex and non-convex radiation source search through comparison
against the RID-FIM and GS across SNR. The GS had strong performance when the SNR was
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high but quickly lost efficacy with decreasing SNR. The RID-FIM typically required fewer
measurements to complete episodes but had a slightly greater chance of not completing all
of the episodes at lower SNRs. The RAD-A2C consistently completed all episodes albeit
at the cost of taking more measurements. Guaranteed episode completion is arguably the
most important criteria for radiation source search applications.

Estimator performance served as another lens to compare the controller performance
directly. The same BPF was used for both controllers (RID-FIM, A2C) so that the RMSE and
PCRB for the location prediction could be compared. We found that on average, the BPF
RMSE was lower for the longer episode lengths when the A2C was the controller as it was
able to factor in measurements to its action selection, as opposed to the RID-FIM which
selected actions solely on the BPF location prediction. The RID-FIM’s action selection
scheme is well-motivated but is susceptible to incorrect state estimates from the estimator.

In the non-convex environment, the RAD-A2C completed greater than 95% of episodes
over a range of obstructions and SNRs. There was very little gradient information available
in the environments with more obstructions and thus the GS algorithm completed a much
lower percentage of episodes. The RAD-A2C demonstrated generalizability as it was able
to maintain a high completion percentage in a seven obstruction environment that it had
never been trained on.

As mentioned in Section 2.3, the RAD-A2C formulation has the potential to be applied
to other variations of the radiation source search. These include moving and/or shielded
nuclear sources, spatially varying background rates, utilizing an attenuation model for
different environment materials, locating an unknown number of multiple sources, and a
larger, more complex urban environment such as the one used by Hite et al. [8]. A classifi-
cation layer could also be added to the A2C module that is trained on detecting whether
a source is present or not and how many sources are present. Noise could be added to
the other dimensions of the observation vector such as the detector coordinates and/or
the obstruction range measurements. In theory, the majority of these cases only require
modification of the simulation environment, clever shaping of the reward signal, and hy-
perparameter sweeps to determine the model parameters.

Our proposed algorithm could be trained in a more realistic environment and gamma
sensor simulation such as the one utilized for a single UAV source search by Baca et al. [32].
The authors developed a realistic gamma radiation simulation plugin for the Gazebo/ROS
environment. Gazebo is a realistic open-source robotics simulator [33]. This plugin could
then be easily interfaced with our DRL algorithm using the OpenAI_ROS Gym developed
by Ezquerro et al. that seamlessly connects Gazebo and OpenAI Gym interfaces [34].

After training in a more realistic simulation environment, the trained network could
then be evaluated in a real scene. For a real field application, a 7.6 cm diameter by 7.6 cm
length cylindrical NaI detector is fairly common and could be used. NaI detectors were
measured to have a peak resolution at 662 keV of 6% (FHWM/centroid), sufficient to
discriminate the full energy peak from most of the Compton scatter. As the low energy
portion of the spectrum overlaps more with background radiation, without developing
a background correction it is easier use the more easily identified peak for localization.
With additional identification algorithms and higher resolution detectors, more complicated
spectra could certainly be used.
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Abbreviations
The following abbreviations are used in this manuscript:

A2C Advantage actor-critic
BPF Bootstrap particle filter
BPF-A2C Bootstrap particle filter and actor-critic
CRB Cramér-Rao lower bound
DRL Deep reinforcement learning
DL Deep learning
FIM Fisher information matrix
GRU Gated recurrent unit
GS Gradient search
LOS Line-of-sight
NLOS No line-of-sight
ML Machine learning
PCRB Posterior Cramér-Rao lower bound
PFGRU Particle filter gated recurrent unit
PPO Proximal policy optimization
RAD-A2C Our proposed actor-critic architecture
RNN Recurrent neural network
RID Rényi information divergence
RID-FIM Hybrid information-driven controller that uses RID and FIM
RL Reinforcement learning
SNR Signal-to-noise ratio

Appendix A. RAD-A2C

Appendix A.1. Particle Filter Gated Recurrent Unit (PFGRU)

The PFGRU is an embedding of the BPF into a GRU architecture proposed by Ma et al [29].
As in the BPF, there are a set of particles and weights used for filtering and prediction of
the posterior state distribution. In the case of the PFGRU, the particles are represented
by the set of hidden or latent state vectors, {hi

n}
Ngp
i=1 . The latent states are propagated and

the weights updated at each timestep by a learned transition and measurement function
denoted as,

hi
n+1 = ftr(hi

n, ζ i
n+1)

x̂i
1:,n+1 = fout(hi

n+1),
(A1)

where ζ i
n ∼ p(ζ i

n+1|hi
n+1) is a learned noise term akin to the process noise in the BPF and

x̂i
1:,n+1 denotes the source location prediction. The weight update also relies on a learned

likelihood function,
wi

n+1 = η fobs(zn+1, hi
n+1)w

i
n, (A2)

where η is a normalization factor.
The PFGRU utilizes a soft resampling scheme to combat particle degeneracy while

maintaining model differentiability. This is achieved by sampling particle indices from
a multinomial distribution with probabilities determined by a convex combination of
a uniform distribution and the particle weight distribution. The new weights are then
determined by,

w
′
n+1 =

waj
n

n+1

αw
aj

n+1
n+1 + (1− α)(1/Ngp)

, (A3)
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where α is the mixture coefficient parameter. The new latent states, hi′
n+1, are resampled

from the previous latent states using a multinomial distribution over particle indices with
probability equal to the particle weights. The loss function consists of two components
to capture the important facets of state space tracking. The first component is the mean
squared loss between the mean particle source location prediction and the and the true
source location. The second component is the evidence lower bound (ELBO) loss that mea-
sures the difference in distribution of the particle distribution relative to the observation
likelihood, for more details see [29]. The total loss is expressed as,

L(θ) = LMSE + β ∗ LELBO, (A4)

where β is a weighting parameter determined by the user. Figure A1 shows the PFGRU ar-
chitecture.

Figure A1. PFGRU Architecture. The hidden state hi
n and weights wi

n are elements of a set of size Ngp. Each box represents
a weight matrix and activation function and the circles represent mathematical operations. The conjoining lines represent
concatenation of the quantity and diverging lines represent the copying. The crux of the reset (r̃n) and update (zn) gates are
to modify the candidate hidden state (h̃n) which then becomes the output hidden state (hn). The hidden state and weights
are resampled using a soft-resampling scheme at each timestep to preserve differentiability. Recreated from [29].

Appendix A.2. Training

The estimate of the gradient iterate Equation (11) is improved by increasing the
number of histories being averaged over. Schulman et al. improved training scalability
by instantiating copies of the DRL agent and environment on different CPU cores to
parallelize episode collection [25]. Each DRL agent computes its parameter gradients after
all episodes for an epoch have been collected. The gradients are then averaged across
all the cores and a weight update is performed per core. An important distinction in
the implementation used here is the environment variation across the CPU cores. All of
the sampled quantities were different per core and fixed per epoch resulting in a more
generalized policy. This is because the averaged gradient step will be in the direction that
improves performance across a diverse set of environments. Tobin et al. proposed a similar
idea called domain randomization that aimed to bridge the gap between DRL simulators
and reality by introducing extra variability into the simulator [17]. Table A1 shows the
hyperparameters that resulted in the strongest performance for the DRL agent from the
parameter sweep. The total training time for a single DRL agent running on 10 cores took
approximately 26 hrs. The PFGRU added considerable training overhead but resulted in
the best performance. Future work should experiment with different localization modules
or using a pretrained PFGRU. A graphics processing unit did not provide a speedup in
training due to the variation in episode length per epoch. This required that the episodes
be fed to the network serially.
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Table A1. Hyperparameter values with the strongest performance for the DRL agent from our
parameter sweep. The parameter c is the loss weighting coefficient for the value function loss.
The parameters γ and λ are used in the generalized advantage estimator [24]. The parameter η is
the maximum value for the approximate Kullback-Leibler divergence before weight updates are
terminated for the epoch.

Parameter Value

Epochs 3000

Episodes per epoch 4
Num. cores 10

Tot. weights & biases 7443
GRU hidden size 24

PFGRU hidden size 24
PFGRU particles 40

Learning Rate A2C 3× 10−4

Learning Rate PFGRU 5× 10−3

Optimizer Adam
c 0.01

(γ,λ,η) (0.99, 0.9, 0.105)

The RAD-A2C was trained eight separate times with eight different random seeds
to assess model stability. In seven of the eight models, the RAD-A2C achieved training
curve performance that was consistent with the model we used for the assessment in
this paper. This is evidenced by the training curves in Figure A2 that show the average
number of completed episodes and the average episode length over the 10 parallelized
environments per epoch. The dark blue line represents the smoothed mean and the shaded
region represents the smoothed 10th and 90th percentiles over the eight random seeds.
The maximum possible number of completed episodes per epoch was 40. The one model
that did not converge as well as the others showed oscillations in the performance curves
indicating that a parameter update resulted in an adverse policy change. Training for more
than 3000 epochs did not significantly improve performance.
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Figure A2. Performance curves during the training process for the RAD-A2C over eight random seeds. (a) shows the
number of completed episodes and (b) shows the episode length averaged over the 10 parallelized environments per epoch.
The dark blue line represents the smoothed mean and the shaded region represents the smoothed 10th and 90th percentiles
over the eight random seeds. Episode length decreases and number of completed episodes increases as the model converges
to a useful policy. Training for more than 3000 epochs did not significantly improve performance.
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Appendix A.3. Standardization

A common technique in DL is to standardize the input data to increase training
stability and speed. This is done by subtracting the mean and dividing by the standard
deviation per feature across a batch of input data. The DRL context does not have easy
access to the full data statistics since it is collected and processed online. We used a
technique proposed by Welford for estimating a running sample mean and variance as
follows [35],

µn+1 = µn +
(on+1 − µn)

n
Sn+1 = Sn + (on+1 − µn)(on+1 − µn+1)

σ2
n+1 =

Sn+1

n
,

(A5)

where µ0 = o0, S0 = 0. The statistics were updated after each new observation and
then standardization was performed. The quantities were reset to 0 after an episode was
completed.

Appendix B. Information-Driven Controller

Information-driven search is an information-theoretic framework for sequential action
selection. This framework endows the controller with the ability to update its path plan
as new observations become available as opposed to relying only on whether the target
has been detected or not [36]. Information is integrated across time by tracking the pos-
terior probability density of states of interest. This can quickly become computationally
prohibitive and so heuristic methods such as the bootstrap particle filter (BPF) are employed.

Appendix B.1. Bootstrap Particle Filter (BPF)

The BPF is typically used to track a dynamic process over time. It has been proven
that an optimal estimate of the state can be recovered from the posterior state distribution,
however, it is often computationally intractable to track when the state dimension is
high [37]. Thus, methods such as the BPF attempt to approximate the posterior state
through a set of samples, {xi

n, wi
n}

Np
i=1, often referred to as particles and weights, respectively.

This leads to the approximation,

P(xn+1|z0:n+1) ≈
Np

∑
i=1

wi
n+1δ(xn+1 − xi

n+1), (A6)

where P(xn+1|z0:n+1) is the marginal posterior over the states of interest, wi
n+1 is the ith

particle weight, xi
n+1 is the ith particle, δ(·) is the Dirac Delta function, and Np is the number

of particles. At each timestep, the particles are propagated through the process model and
a measurement prediction is generated with the measurement model. The particle weights
are calculated recursively as,

wi
n+1 ∝

p(zn+1|xi
n+1)p(xi

n+1|xi
n)

q(xi
n+1|xi

n, zn+1)
wi

n, (A7)

where p(zn+1|xi
n+1) is the measurement likelihood, p(xi

n+1|xi
n) is the transition density,

and q(xi
n+1|xi

n, zn+1) is an importance density [37]. Particles are drawn from a user-
specified importance density qx. In our implementation, the importance density is set equal
to the prior distribution to reduce the weight update step to the measurement likelihood
and the previous weight:

wi
n+1 ∝ p(zn+1|xi

n+1)w
i
n. (A8)

If a particle has a low probability for a given measurement, this effectively removes the
particle’s contribution to the estimated posterior which can adversely affect state estimation
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over the trajectory and is known as the degeneracy problem. Particle degeneracy can be
tracked by the following metric to characterize the number of effective particles at a given
time step,

Ne f f ,n =
1

∑
Np
i=1(w

i
n)

2
. (A9)

Particle degeneracy can be alleviated by resampling the particles and reinitializing the
weights when the number of effective particles becomes too low. In our context, the nuclear
source intensity and coordinates are fixed throughout an episode. We adapt the BPF for
parameter estimation with a random walk process model that has low variance Gaussian
noise. The initial particles were sampled uniformly from fixed intervals as specified in
Table A2. Equations (2) and (3) are the measurement model and likelihood, respectively.
The background rate, λb, was considered constant and known.

Sequential importance resampling is a technique to combat particle degeneracy and
occurs when the number of effective particles drops below a given threshold. We selected
the Srinivasan sampling process (SSP) resampling proposed by Gerber et al. because of
asymptotic convergence of the error variance [38]. Additionally, SSP resampling requires
only O(Np) operations. See [38,39] for more details.

Appendix B.2. Fisher Information Matrix (FIM)

The FIM is a measure of the information content of a measurement relative to the
measurement model. It was first used in optimal observer motion for bearings-only
tracking by Hammel et al. [40]. In their implementation, the controller selects the action at
each timestep that maximizes the determinant of the FIM (system observability), which is
equivalent to minimizing the area of the uncertainty ellipsoids around the state estimates.
This arises from the connection between the FIM and the Cramér-Rao lower bound (CRB).

The CRB provides a lower bound on the error covariance of an unbiased estimator
and is the inverse of the FIM [41]. The FIM is the Hessian of the log-likelihood and is
denoted as follows,

Jn+1(x) = −E[∇x∇T
x ln(p(zn+1|x))], (A10)

where T denotes the transpose. Morelande et al. derived the closed form FIM for the
radiation source localization problem as [7],

Jn+1(x) =
∇xλn+1(x)∇T

x λn+1(x)
λn+1(x)

, (A11)

where λn(x) is defined in Equation (2). This results in the following gradient for each
parameter,

δλn

δIs
=

1
(xn − xs)2 + (yn − ys)2 ,

δλn

δxs
=

2(xn − xs)Is

[(xn − xs)2 + (yn − ys)2]2
,

δλn

δys
=

2(yn − ys)Is

[(xn − xs)2 + (yn − ys)2]2
.

(A12)

Ristic et al. used the BPF particles at each time step to calculate the FIM as follows,

Jn+1(xn) ≈
Np

∑
j=1

Jn+1(x
j
n)w

j
n, (A13)
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due to better performance when the posterior is multi-modal [11]. They applied this
formulation to action selection in the radiation source search in the following manner,

an+1 = arg max
un+1,L

[
L

∑
l=n+1

tr(Jl(ul))

]
, (A14)

where L is the number of lookahead steps, tr() is the matrix trace, and un is the control
vector that determines the detector’s next position.

Helferty et al. proposed to use the trace of the CRB as it is a sum of squares of the
axes of the uncertainty ellipsoid [42]. This is also known as A-optimality in the optimal
experimental design literature [43]. Ristic et al. maximized the trace of the FIM that
corresponds to maximizing the information, however, it is beyond the scope of this paper
to show the relation between these two criteria. This control strategy will result in the
optimal trajectory for minimizing the uncertainty of the estimated quantities given perfect
source information (i.e., low or no measurement error). The source information in the
nuclear source search context is not perfect due to the stochastic nature of nuclear decay and
background radiation. Additionally, the FIM is not well defined for initial search conditions
where the background radiation dominates the signal from the source, i.e., when the source-
detector distance is large and/or the background rate is high.

Appendix B.3. Rényi Information Divergence (RID)

Ristic et al. proposed another information-driven search strategy to address the
shortcomings of the FIM-based approach. This approach is based upon the RID, also known
as α-divergence, a general information metric that quantifies the difference between two
probability distributions. In Bayesian estimation, maximizing this difference corresponds
to reducing the uncertainty around the state estimates. The use of RID was first proposed
in the sensor management context by Kreucher et al. [44]. The RID is defined as,

Dα(P||Q) =
1

α− 1
ln
[∫

Pα(x)Q1−α(x)dx
]

, (A15)

where α specifies the order. In the limit as α approaches one, the RID approaches the
Kullback-Leibler Divergence [44].

Ristic et al. adapted the RID for action selection in the nuclear source search context
with a BPF [12]. The general flow of the algorithm is to apply an action from the set of
actions to get the next potential detector position, calculate the expected posterior density
for that action over a measurement interval, and then select the action that resulted in the
greatest RID. The particle approximation of the RID is shown in the following equation,

E[Dα(p(xun+1 |z), p(x|z))] ≈ 1
α− 1

Z1

∑
z=Z0

p(z|x)ln
[

pα(z|xun+1)

p(z|x)α

]
, (A16)

where xun+1 denotes the potential detector position after taking action un+1, Z0, Z1 is a
measurement interval, and z ∈ N. The density pα(z|xun+1) is approximated after filtering
the latest measurement and particle resampling as,

pα(z|xun+1) =
Np

∑
j=1

wj
n p(z|xj,un+1

n )α, (A17)

and p(z|x) results from the particle approximation of the marginal distribution of a mea-
surement. Like the FIM, the RID can also be computed for L-step planning.
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Appendix B.4. Hybrid RID-FIM Controller

We propose a hybrid controller that utilizes either the RID or FIM as metrics for
action selection. This was motivated in part by the empirical observation that the RID
controller would often get stuck oscillating between two positions that were just above our
termination criteria for source-detector distance resulting in incomplete episodes. The FIM
is a poor control metric when there is little information available as is often the case at the
start of a search. The RID is more computationally expensive than the FIM but provides a
principled control method even in low information contexts. Thus, the RID was used for
control at the beginning of each episode until the RID reached a sufficient threshold, then
the metric was switched over to the FIM for the remainder as shown in Algorithm A1.

Algorithm A1 RID-FIM Controller.

Input:{xj
0, wj

0}
Np
j=1, set RID FLAG to 1, switch threshold η, effective particles threshold β,

measurement interval [Z0, Z1]
Receive init. measurement, z0, perform prediction and filtering of particles
while episode not terminated do

if RID FLAG then
Calculate RID according to Equation (A16) over [Z0, Z1]
if RID > η then

Set RID FLAG to 0
end if

else
Calculate FIM according to Equation (A13)

end if
Select action that maximizes information metric
Receive zn+1, perform prediction and filtering of particles
if Ne f f < β ∗ Np then

Resample and reweight particles
end if

end while

We decided on myopic (one-step lookahead) planning due to the exponential increase
in computational cost inherent to both metric calculations. Additionally, many source
search scenarios will have high uncertainty in the state estimates for many timesteps so
planning far in advance is not advantageous. Myopic search is often sub-optimal but is
a fair tradeoff when the problem dynamics are stable [44]. The parameter values for the
RID-FIM, as well as the BPF, are detailed in Table A2. All parameters were selected by a
parameter sweep over a set of 100 randomly sampled environments where the selection
criteria was shortest average episode length and most episodes completed.

Table A2. Parameter values for the BPF and RID-FIM. The source intensity was

Parameter Value

Np 6000
Ne f f 6000

Process noise XY 0.01 m
Process noise Is 15× 104 gps

Prior XY [0, 22] m
Prior I [1× 106, 1× 107] gps

Resampling threshold, β 1.0
Lookahead, L 1

Order, α 0.6
Switch threshold, η 0.36

Meas. interval [Z0, Z1] ±75 cps
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Appendix B.5. Posterior Cramér-Rao Lower Bound (PCRB)

The BPF is a biased estimator as it only uses a finite number of particles. The PCRB
provides a lower bound on the root-mean-square error (RMSE) performance for a biased
estimator. Tichavsky proposed the PCRB for discrete-time nonlinear filtering [45], how-
ever, we follow a similar formulation found in Bergman’s dissertation [31]. The PCRB is
determined recursively in the following manner,

P−1
0|0 = Σ−1Λ−1

∫
x
∇xλ0(x)∇T

x λ0(x)dx,

P−1
n+1|n+1 = Qn + Rn+1 − ST

n (P−1
n|n + Vn)

−1Sn,
(A18)

where the terms Sn, Vn, and Qn are all the same inverse process noise covariance matrix,
denoted as Σ−1. This arises from the fact that our process model is a random walk with
Gaussian noise for each state. The term Rn is the FIM defined in Equation (A10). The prior,
P0|0, is a result of the uniform distribution of the particles where Λ is a diagonal matrix
of the uniform probabilities for each parameter. More details of the derivation of the
PCRB and prior can be found in Bergman’s dissertation in Theorem 4.5 and Section 7.3,
respectively [31].

We average the RMSE and PCRB over the Monte Carlo evaluations resulting in the
following formulation, √√√√ 1

K

K

∑
i=1

∥∥∥x̂i
n − xi

n

∥∥∥2
&

√√√√ 1
K

K

∑
i=1

tr(Pi
n), (A19)

where K is the total number of episodes and & denotes that the inequality only holds
approximately for finite K [31]. The PCRB provides an indicator of the suboptimality of
an estimator and so we use it to directly compare the performance of the A2C with the
RID-FIM. This is accomplished by evaluating the A2C with the exact same BPF estimator
used with the RID-FIM for the source location state estimates. Not only can the estimator
RMSE be compared against the PCRB, but the PCRBs resulting from both controllers can be
compared as well. This will serve as a proxy for the quality of the control path generated
by each controller.

Appendix C. Gradient Search

We use the simple GS algorithm implemented by Liu et al. [16]. GS relies on sampling
the gradient of the radiation field for each search direction at each timestep. This is not an
efficient algorithm as the detector must make D moves per action selection but serves as a
useful baseline for performance comparison. The action selection is made stochastic by
sampling from a multinomial distribution, denoted multi(n,p), over actions with probabili-
ties proportional to the softmax of the gradients to avoid the trapping of local optima. GS
is summarized by the following equation,

an+1 ∼ multi(|U |, softmax([
1
q

δzn+1

δu1
, . . . ,

1
q

δzn+1

δu|U |
])), (A20)

where u is the detector position after action i, softmax(·) is the softmax function, and q is a
temperature parameter. The temperature parameter was set at 0.0042 and was determined
via a parameter sweep over a set of 100 randomly sampled environments where the
selection criteria was shortest average episode length and most episodes completed.
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