664 research outputs found

    A parsec-scale flow associated with the IRAS 16547-4247 radio jet

    Full text link
    IRAS 16547-4247 is the most luminous (6.2 x 10^4 Lsun) embedded young stellar object known to harbor a thermal radio jet. We report the discovery using VLT-ISAAC of a chain of H_2 2.12 um emission knots that trace a collimated flow extending over 1.5 pc. The alignment of the H_2 flow and the central location of the radio jet implies that these phenomena are intimately linked. We have also detected using TIMMI2 an isolated, unresolved 12 um infrared source towards the radio jet . Our findings affirm that IRAS 16547-4247 is excited by a single O-type star that is driving a collimated jet. We argue that the accretion mechanism which produces jets in low-mass star formation also operates in the higher mass regime.Comment: Accepted for publication in ApJL, 10 pages, 2 figure

    A cochain level proof of Adem relations in the mod 2 Steenrod algebra

    Get PDF
    In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-i products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod p operations for all primes p. Steenrod's student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrod's original cochain definition of the Square operations

    High Angular Resolution Observations of the Collimated Jet Source Associated with a Massive Protostar in IRAS 16547-4247

    Full text link
    A triple radio source recently detected in association with the luminous infrared source IRAS 16547-4247 has been studied with high angular resolution and high sensitivity with the Very Large Array at 3.6 and 2 cm. Our observations confirm the interpretation that the central object is a thermal radio jet, while the two outer lobes are most probably heavily obscured HH objects. The thermal radio jet is resolved angularly for the first time and found to align closely with the outer lobes. The opening angle of the thermal jet is estimated to be ∼25∘\sim 25^\circ, confirming that collimated outflows can also be present in massive protostars. The proper motions of the outer lobes should be measurable over timescales of a few years. Several fainter sources detected in the region are most probably associated with other stars in a young cluster.Comment: 9 pages, 2 figure

    A multiwavelength study of young massive star forming regions: II. The dust environment

    Full text link
    We present observations of 1.2-mm dust continuum emission, made with the Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point sources, all with colors typical of compact HII regions and associated with CS(2-1) emission, thought to be representative of young massive star forming regions. Emission was detected toward all the IRAS objects. We find that the 1.2-mm sources associated with them have distinct physical parameters, namely sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these dust structures as massive and dense cores. Most of the 1.2-mm sources show single-peaked structures, several of which exhibit a bright compact peak surrounded by a weaker extended envelope. The observed radial intensity profiles of sources with this type of morphology are well fitted with power-law intensity profiles with power-law indices in the range 1.0-1.7. This result indicates that massive and dense cores are centrally condensed, having radial density profiles with power-law indices in the range 1.5-2.2. We also find that the UC HII regions detected with ATCA towards the IRAS sources investigated here (Paper I) are usually projected at the peak position of the 1.2-mm dust continuum emission, suggesting that massive stars are formed at the center of the centrally condensed massive and dense cores.Comment: 6 figures, accepted by Ap

    The open cluster NGC 6520 and the nearby dark molecular cloud Barnard 86

    Get PDF
    Wide field BVI photometry and 12^{12}CO(1→\to0) observations are presen ted in the region of the open cluster NGC 6520 and the dark molecular cloud Barnard~86. From the analysis of the optical data we find that the cluster is rather compact, with a radius of 1.0±\pm0.5 arcmin, smaller than previous estimates. The cluster age is 150±\pm50 Myr and the reddening EB−V_{B-V}=0.42±\pm0.10. The distance from the Sun is estimated to be 1900±\pm100 pc, and it is larger than previous estimates. We finally derive basic properties of the dark nebula Barnard 86 on the assumption that it lies at the same distance of the cluster.Comment: 21 pages, 8 eps figures (a few degraded in resolution), accepted for publication in the Astronomical Journa

    Modelling the Effects of Changes in Forest Cover and Climate on Hydrology of Headwater Catchments in South-Central Chile

    Get PDF
    This study analyses the changes in the runoff of forested experimental catchments in south-central Chile, to determine to what extent observed trends can be attributed to effects of intensive forestry and/or climate change. For this, we applied the distributed TETIS® model to eight catchments (7.1−413.6 ha) representative of the land uses and forestry activities in this geographical area. Rainfall and runoff data collected between 2008 and 2015 were used for modelling calibration and validation. Simulation of three land uses (current cover, partial harvest and native forest) and 25 combinations of climatic scenarios (percentage increases or decreases of up to 20% of rainfall and evapotranspiration relative to the no-change scenario applied to input series) were used in each calibration. We found that changes in land use and climate had contrasting effects on runoff. Smaller catchments affected by the driest climatic scenarios experienced higher runoff when the forest cover was lower than under full forest cover (plantations or native forests). In contrast, larger catchments under all climatic scenarios yielded higher runoff below the full forest cover than under partial harvest and native forest. This suggests that runoff can be influenced, to a great extent, by rainfall decrease and evapotranspiration increase, with the model predicting up to a 60% decrease in runoff yield for the dry’s climatic scenario. This study proves to be relevant to inform ongoing discussions related to forest management in Chile, and is intended to minimize the impact of forest cover on runoff yield under uncertain climatic scenarios.The authors acknowledge the support from the Economy and Knowledge Department of the Catalan Government through the Consolidated Research Group ‘Fluvial Dynamics Research Group’—RIUS (2017 SGR 459)

    β-decay rates of 121–131Cs in the microscopic interacting boson-fermion model

    Get PDF
    β -decay rates of 121–131 Cs have been calculated in the framework of the neutron-proton interacting boson- fermion model (IBFM-2). For odd- A nuclei, the decay operator can be written in a relatively simple form in terms of the one-nucleon transfer operator. Previous studies of β decay in IBFM-2 were based on a transfer operator obtained by using the number operator approximation (NOA). In this work a new form of the one-nucleon transfer operator, derived microscopically without the NOA approximation, is used. The results from both approaches are compared and show that the deviation from experimental data is reduced without using the NOA approximation. Indications about the renormalization of the Fermi and Gamow-Teller matrix elements are discussed. This is a further step toward a more complete description of low-lying states in medium and heavy nuclei which is necessary to compute reliable matrix elements in studies of current active interest such as double- β decay or neutrino absorption experimentsMinisterio de Economía y Competitividad (España) FIS2014-53448-C2-1-PConsejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía FQM-160 P11-FQM-763

    Gamma-ray emission from massive young stellar objects

    Get PDF
    Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Proton-proton collision should also occur, producing an injection of neutral pions. In this paper we aim at making quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. We present spectral energy distributions for the southern lobe of this source, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain (MeV to TeV). The source may also be detectable at X-rays through long exposures with current X-ray instruments.Comment: 8 pages, 6 figures, accepted for publication in A&

    A Multiwavelength Study of Young Massive Star-Forming Regions. III. Mid-Infrared Emission

    Full text link
    We present mid-infrared (MIR) observations, made with the TIMMI2 camera on the ESO 3.6 m telescope, toward 14 young massive star-forming regions. All regions were imaged in the N band, and nine in the Q band, with an angular resolution of ~ 1 arcsec. Typically, the regions exhibit a single or two compact sources (with sizes in the range 0.008-0.18 pc) plus extended diffuse emission. The Spitzer-Galactic Legacy Infrared Mid-Plane Survey Extraordinaire images of these regions show much more extended emission than that seen by TIMMI2, and this is attributed to polycyclic aromatic hydrocarbon (PAH) bands. For the MIR sources associated with radio continuum radiation (Paper I) there is a close morphological correspondence between the two emissions, suggesting that the ionized gas (radio source) and hot dust (MIR source) coexist inside the H II region. We found five MIR compact sources which are not associated with radio continuum emission, and are thus prime candidates for hosting young massive protostars. In particular, objects IRAS 14593-5852 II (only detected at 17.7 microns) and 17008-4040 I are likely to be genuine O-type protostellar objects. We also present TIMMI2 N-band spectra of eight sources, all of which are dominated by a prominent silicate absorption feature (~ 9.7 microns). From these data we estimate column densities in the range (7-17)x10^22 cm^-2, in good agreement with those derived from the 1.2 mm data (Paper II). Seven sources show bright [Ne II] line emission, as expected from ionized gas regions. Only IRAS 123830-6128 shows detectable PAH emission at 8.6 and 11.3 microns.Comment: Published in ApJ. 15 pages, 6 figures. Formatted with emulateapj; v2: Minor language changes to match the published versio
    • …
    corecore