136 research outputs found

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Two-band second moment model and an interatomic potential for caesium

    Full text link
    A semi-empirical formalism is presented for deriving interatomic potentials for materials such as caesium or cerium which exhibit volume collapse phase transitions. It is based on the Finnis-Sinclair second moment tight binding approach, but incorporates two independent bands on each atom. The potential is cast in a form suitable for large-scale molecular dynamics, the computational cost being the evaluation of short ranged pair potentials. Parameters for a model potential for caesium are derived and tested

    Transport spectroscopy in a time-modulated open quantum dot

    Full text link
    We have investigated the time-modulated coherent quantum transport phenomena in a ballistic open quantum dot. The conductance GG and the electron dwell time in the dots are calculated by a time-dependent mode-matching method. Under high-frequency modulation, the traversing electrons are found to exhibit three types of resonant scatterings. They are intersideband scatterings: into quasibound states in the dots, into true bound states in the dots, and into quasibound states just beneath the subband threshold in the leads. Dip structures or fano structures in GG are their signatures. Our results show structures due to 2ω\hbar\omega intersideband processes. At the above scattering resonances, we have estimated, according to our dwell time calculation, the number of round-trip scatterings that the traversing electrons undertake between the two dot openings.Comment: 8 pages, 5 figure

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Photodynamic destruction of endometrial tissue with topical 5-aminolevulinic acid in rats and rabbits

    Full text link
    ObjectiveThe goal of this study was to determine the optimal parameters for photodynamic endometrial destruction with topically applied 5-aminolevulinic acid, a precursor for the endogenous synthesis of the fluorescent photosensitizer protoporphyrin IX.Study design5-Aminolevulinic acid pharmacokinetics were measured in rat and rabbit models by analyzing tissue frozen sections 3 to 12 hours after topical administration. Dose-response studies were conducted for 100 to 400 mg/ml 5-aminolevulinic acid. Photodynamic therapy was performed intraluminally, and tissue morphologic features were evaluated 3 and 7 days after treatment.ResultsPeak fluorescence was observed 3 hours after topical administration. Glandular fluorescence significantly exceeded stromal and myometrial in all studies, particularly for 200 mg/ml 5-aminolevulinic acid. Histologic studies revealed persistent epithelial destruction with minimal regeneration.ConclusionTopical 5-aminolevulinic acid photodynamic therapy can be used for highly effective, long-lasting destruction of endometrial epithelium. However, optical dosimetry can vary, particularly in the rabbit model, and this appears to have an impact on long-term reepithelialization

    Associated Links Among Smoking, Chronic Obstructive Pulmonary Disease, and Small Cell Lung Cancer: A Pooled Analysis in the International Lung Cancer Consortium.

    Get PDF
    Background The high relapse and mortality rate of small-cell lung cancer (SCLC) fuels the need for epidemiologic study to aid in its prevention. Methods We included 24 studies from the ILCCO collaboration. Random-effects panel logistic regression and cubic spline regression were used to estimate the effects of smoking behaviors on SCLC risk and explore their non-linearity. Further, we explored whether the risk of smoking on SCLC was mediated through COPD. Findings Significant dose–response relationships of SCLC risk were observed for all quantitative smoking variables. Smoking pack-years were associated with a sharper increase of SCLC risk for pack-years ranged 0 to approximately 50. The former smokers with longer cessation showed a 43%quit_for_5–9 years to 89%quit_for_≥ 20 years declined SCLC risk vs. subjects who had quit smoking < 5 years. Compared with non-COPD subjects, smoking behaviors showed a significantly higher effect on SCLC risk among COPD subjects, and further, COPD patients showed a 1.86-fold higher risk of SCLC. Furthermore, smoking behaviors on SCLC risk were significantly mediated through COPD which accounted for 0.70% to 7.55% of total effects. Interpretation This is the largest pooling study that provides improved understanding of smoking on SCLC, and further demonstrates a causal pathway through COPD that warrants further experimental study. Abbreviations COPD, chronic obstructive pulmonary disease; CPG, cigarettes per day; ILCCO, International Lung Cancer Consortium; MeSH, medical subject headings; NSCLC, non-small cell lung cancer; OR, odds ratio; SCLC, small cell lung cancer
    corecore