561 research outputs found
Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)]
produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the
rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking
A phenomenological theory of nonphotochemical laser induced nucleation
Our analysis of the experimental data related to nonphotochemical laser
induced nucleation in solutions leads to the inevitable conclusion that the
phase transformation is initiated by particles that are metallic in nature.
This conclusion appears paradoxical because the final products are dielectric
crystals. We show that the experimental results are well accounted for by the
theory of electric field induced nucleation of metallic particles that are
elongated in the direction of the field. However, new physical and chemical
insights are required to understand the structure of the metallic precursor
particles and the kinetics of subsequent dielectric crystallization.Comment: 5 pages 4 figure
A personalized multi-channel FES controller based on muscle synergies to support gait rehabilitation after stroke
It has been largely suggested in neuroscience literature that to generate a vast variety of movements, the Central Nervous System (CNS) recruits a reduced set of coordinated patterns of muscle activities, defined as muscle synergies. Recent neurophysiological studies have recommended the analysis of muscle synergies to finely assess the patient's impairment, to design personalized interventions based on the specific nature of the impairment, and to evaluate the treatment outcomes. In this scope, the aim of this study was to design a personalized multi-channel functional electrical stimulation (FES) controller for gait training, integrating three novel aspects: (1) the FES strategy was based on healthy muscle synergies in order to mimic the neural solutions adopted by the CNS to generate locomotion; (2) the FES strategy was personalized according to an initial locomotion assessment of the patient and was designed to specifically activate the impaired biomechanical functions; (3) the FES strategy was mapped accurately on the altered gait kinematics providing a maximal synchronization between patient's volitional gait and stimulation patterns. The novel intervention was tested on two chronic stroke patients. They underwent a 4-week intervention consisting of 30-min sessions of FES-supported treadmill walking three times per week. The two patients were characterized by a mild gait disability (walking speed > 0.8 m/s) at baseline. However, before treatment both patients presented only three independent muscle synergies during locomotion, resembling two different gait abnormalities. After treatment, the number of extracted synergies became four and they increased their resemblance with the physiological muscle synergies, which indicated a general improvement in muscle coordination. The originally merged synergies seemed to regain their distinct role in locomotion control. The treatment benefits were more evident for one patient, who achieved a clinically important change in dynamic balance (Mini-Best Test increased from 17 to 22) coupled with a very positive perceived treatment effect (GRC = 4). The treatment had started the neuro-motor relearning process also on the second subject, but twelve sessions were not enough to achieve clinically relevant improvements. This attempt to apply the novel theories of neuroscience research in stroke rehabilitation has provided promising results, and deserves to be further investigated in a larger clinical study
Game theory and evolutionary algorithms applied to MDO in the AGILE European project
In this paper, an optimization technique in aircraft design field, based on game theory and evolutionary algorithms to define the key variables for Multi-Disciplinary aircraft Optimization (MDO) into AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) European project, is presented. This work represents one of the contributions given by UniNa (University of Naples “Federico II”) research group within the AGILE project, which is coordinated by the DLR and funded by EU through the project HORIZON 2020 that aims to create an evolution of MDO, promoting a novel approach based on collaborative remote design and knowledge dissemination among various teams of experts. Since the aircraft design field is very complex in terms of number of involved variables and the dimension of the space of variation, it is not feasible to perform an optimization process on all the design parameters; this leads to the need to reduce the number of the parameters to the most significant ones. A multi-objective optimization approach allows many different variables, which could be a constraint or an objective function for the specific investigation; thus, setting the constraints and objectives to reach, it is possible to perform an optimization process and control which parameters significantly affect the final result. Within AGILE project, UniNa research group aims to perform wing optimization processes in a preliminary design stage, coupling Nash game theory (N) with typical genetic evolutionary algorithm (GA), reducing computational time and allowing a more realistic association among objective functions and variables, to identify the main ones that significantly affect final result and that consequently must be considered by the partners of the AGILE consortium to perform MDO in the final part of project, applying the proposed optimization technique to novel aircraft configuration
Instrumental or Physical-Exercise Rehabilitation of Balance Improves Both Balance and Gait in Parkinson’s Disease
We hypothesised that rehabilitation specifically addressing balance in Parkinson’s disease patients might improve not only balance but locomotion as well. Two balance-training protocols (standing on a moving platform and traditional balance exercises) were assessed by assigning patients to two groups (Platform, , and Exercises, ). The platform moved periodically in the anteroposterior, laterolateral, and oblique direction, with and without vision in different trials. Balance exercises were based on the Otago Exercise Program. Both platform and exercise sessions were administered from easy to difficult. Outcome measures were (a) balancing behaviour, assessed by both Index of Stability (IS) on platform and Mini-BESTest, and (b) gait, assessed by both baropodometry and Timed Up and Go (TUG) test. Falls Efficacy Scale-International (FES-I) and Parkinson’s Disease Questionnaire (PDQ-8) were administered. Both groups exhibited better balance control, as assessed both by IS and by Mini-BESTest. Gait speed at baropodometry also improved in both groups, while TUG was less sensitive to improvement. Scores of FES-I and PDQ-8 showed a marginal improvement. A four-week treatment featuring no gait training but focused on challenging balance tasks produces considerable gait enhancement in mildly to moderately affected patients. Walking problems in PD depend on postural instability and are successfully relieved by appropriate balance rehabilitation
Electrical conduction in chalcogenide glasses of phase change memory
Amorphous chalcogenides have been extensively studied over the last half century due to their application in rewritable optical data storage and in non-volatile phase change memory devices. Yet, the nature of the observed non-ohmic conduction in these glasses is still under debate. In this review, we consolidate and expand the current state of knowledge related to dc conduction in these materials. An overview of the pertinent experimental data is followed by a review of the physics of localized states that are peculiar to chalcogenide glasses. We then describe and evaluate twelve relevant transport mechanisms with conductivities that depend exponentially on the electric field. The discussed mechanisms include various forms of Poole-Frenkel ionization, Schottky emission, hopping conduction, field-induced delocalization of tail states, space-charge-limited current, field emission, percolation band conduction, and transport through crystalline inclusions. Most of the candidates provide more or less satisfactory fits of the observed non-linear IV data. Our analysis calls upon additional studies that would enable one to discriminate between the various alternative models
On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy
The weather index-based insurances may help farmers to cope with climate risks overcoming the most common issues of traditional insurances. However, the weather index-based insurances present the limit of the basis risk: a significant yield loss may occur although the weather index does not trigger the indemnification, or a compensation may be granted even if there has not been a yield loss. Our investigation, conducted on Apulia region (Southern Italy), aimed at deepening the knowledge on the linkages between durum wheat yields and weather events, i.e., the working principles of weather index-based insurances, occurring in susceptible phenological phases. We found several connections among weather and yields and highlight the need to collect more refined data to catch further relationships. We conclude opening a reflection on how the stakeholders may make use of publicly available data to design effective weather crop insurances
On the relationships among durum wheat yields and weather conditions : evidence from Apulia region, Southern Italy
Published online: 30 August 2022The weather index-based insurances may help farmers to cope with climate risks overcoming the most common issues of traditional insurances. However, the weather index-based insurances present the limit of the basis risk: a significant yield loss may occur although the weather index does not trigger the indemnification, or a compensation may be granted even if there has not been a yield loss. Our investigation, conducted on Apulia region (Southern Italy), aimed at deepening the knowledge on the linkages between durum wheat yields and weather events, i.e., the working principles of weather index-based insurances, occurring in susceptible phenological phases. We found several connections among weather and yields and highlight the need to collect more refined data to catch further relationships. We conclude opening a reflection on how the stakeholders may make use of publicly available data to design effective weather crop insurances
- …
