7 research outputs found

    Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

    Get PDF
    Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair

    Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress.

    No full text
    In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress

    Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polα/Primase/Ctf4 Complex

    Full text link
    Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions

    Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair

    No full text
    Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund–Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Δ and rmi1Δ cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Δ, unlike sgs1Δ, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Δ allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair
    corecore