11 research outputs found

    Ecoconception de nouveaux agents biocides à base de nanoparticules d'argent à enrobage bio-inspiré

    No full text
    Silver nanoparticles are increasingly used in everyday consumer goods as well as in medical devices for their biocidal activity, which is due to the release of Ag(I) ions over time. The hindsight on these nano-objects and, in particular, on their safety is still not sufficient and studies on their transformation and their impact in vivo is currently an intense research field. Indeed, the fate in the body of macro- and micro-materials studied classically is not the same as for nanomaterials. The case of the silver nanoparticles illustrates this problem: the soluble silver injected intravenously is eliminated faster than the same amount of silver injected in nanoparticular form. Moreover, the concentration of silver found in the bloodstream and organs is ten times higher when silver nanoparticles are injected rather than ingested. The development of silver nanoparticle-containing implanted devices, that get in direct contact with the body, must thus take into account the related risks. A Safer-by-design approach could be a way to solve this issue.One of the main components of Safer-by-design development is the functionalization of nano-objects. The affinity of the thiolates for Ag(I) ions is very high, which would make thiolated ligands a good tool for silver nanoparticle functionalization. However, it is known that the thiolated molecules lead to different behaviors, ranging from the dissolution of silver nanoparticles into Ag(I) ions to the simple passivation of the surface of the nanoparticles, which leads to the loss of their biocidal activity.The Ecodesign of New Biocidal Agents based on Silver Nanoparticles and Bio-inspired Coating is therefore at the interface of several research areas and its main objective was to lay the conceptual foundations for the development of a Safer-by-design biocidal agent based on the interaction between silver nanoparticles and thiolated molecules.The development of this project required to study the reactivity of various biological or bio-inspired thiolated molecules with silver nanoparticles. First of all, we have highlighted the importance of the architectural pre-organization of biomolecules in the dissolution kinetics, as well as the role of the number of free thiols in the molecule. In the case of molecules inducing the dissolution of the nanoparticles, its kinetics increases with the number of free thiols present on the molecule and with the pre-organization of the metal binding site. In a second time, the main project of this thesis was the development of a proof of concept of a new biocidal agent composed of silver nanoparticles bridged together via a thiolated ligand, which is the chemical mimic of one binding site of a metallothionein. These nanoparticle assemblies were active against bacteria (E. coli) and less toxic than silver nanoparticles on eukaryote cells (HepG2), despite a similar cellular entry. Finally, a screening was performed with polyethylene glycols having two to eight thiols and varying polymer lengths in an attempt to rationalize the differences in the behavior of silver nanoparticles in the presence of the thiolated molecules. This ongoing work leads to various behaviors that will enable to explore novel ways for the development of biocidal based on nanoparticles assemblies mediated by thiol – Ag(I) bonds.Therefore, this overall PhD work allows performing both very fundamental researches concerning the reactivity of thiols with surface silver atoms of the nanoparticles and the development of products with application potential, silver nanoparticle assemblies that are Safer-by-design biocide.Les nanoparticules d'argent sont de plus en plus utilisées dans les objets de consommation courante ainsi que dans les dispositifs médicaux pour leur activité biocide, qui est due au relargage d'ions Ag(I) au cours du temps. Le recul sur ces nano-objets et en particulier sur leur innocuité n'est toujours pas suffisant et les études sur leur transformation et leur impact in vivo sont sujets à d’intenses recherches. En effet, le devenir dans l’organisme des macro- et micro-matériaux étudiés classiquement n’est pas le même que celles des nanomatériaux. Les nanoparticules d’argent illustrent bien cette problématique : l’argent soluble injecté par voie intraveineuse est éliminé plus rapidement que la même quantité d’argent injectée sous forme nanoparticulaire. De plus, la concentration en argent retrouvée dans le sang et les organes est dix fois supérieure lorsque les nanoparticules d’argent sont injectées plutôt qu’ingérées. C'est pourquoi le développement de produits implantatoires qui se retrouvent donc en contact direct avec l’organisme, et qui contiennent des nanoparticules d’argent doit prendre en compte les risques associés, ce qui peut se faire par une approche Safer-by-design.Une des composantes principales du développement Safer-by-design concerne la fonctionnalisation des nano-objets. L’affinité des thiolates pour l’ion Ag(I) étant très forte, des ligands thiolés pourraient donc constituer une piste pour la fonctionnalisation des nanoparticules d’argent. Néanmoins, il est connu que les molécules thiolées conduisent à différents comportements allant de la dissolution de la nanoparticule d’argent en ions Ag(I) à la simple passivation de la surface de la nanoparticule ce qui peut entrainer la perte de son activité biocide.Ainsi, l’Ecoconception de Nouveaux Agents Biocides à base de Nanoparticules d’Argent à Enrobage Bio-inspiré avait pour objectif principal de poser les bases conceptuelles du développement d’un agent biocide Safer-by-design constitué de nanoparticules d’argent et de molécules thiolées en se positionnant à l’interface de plusieurs disciplines.Le développement de ce projet a nécessité d’étudier la réactivité de diverses molécules biologiques ou bio-inspirées thiolées avec les nanoparticules d’argent. Ainsi, nous avons mis en évidence l’importance de la pré-organisation architecturale des biomolécules dans la cinétique de dissolution, ainsi que le nombre de thiols libres dans la molécule. Dans le cas de composés induisant la dissolution des nanoparticules, sa cinétique augmente avec le nombre de thiols libres présents sur la molécule, et avec la pré-organisation du site de liaison du métal. Le projet principal de cette thèse a ensuite mené à la preuve de concept recherchée, avec le développement d’un nouvel agent biocide composé de nanoparticules d’argents pontées entre elles par un ligand thiolé tripode symétrique qui est le mime chimique d’un site de liaison d’une métallothionéine. Ces assemblages de nanoparticules se sont montrés actifs contre les bactéries (E. coli) et moins toxiques sur les cellules eucaryotes (HepG2), malgré une entrée dans les cellules similaire. Enfin, un criblage a également été réalisé avec des polyéthylèneglycols possédant un à huit thiols et des longueurs de polymères variables dans le but d’essayer de rationaliser les différences de comportement des nanoparticules d’argent en présence des molécules thiolées. Ce travail, a conduit à l’observation des comportements très variés qui vont permettre d’explorer de nouvelles voies de développements de biocides à base d’assemblages de nanoparticules médiés par des liaisons thiol – Ag(I).L’ensemble de ce travail de thèse a donc permis à la fois un travail très fondamental sur la réactivité des thiols vis-à-vis des atomes d’argent à la surface des nanoparticules et au développement de produits à potentiel applicatif, les assemblages de nanoparticules d’argent qui sont des biocides Safer-by-design

    Ecoconception of new biocidal agent made of silver nanoparticles with biomimetic coating

    No full text
    Les nanoparticules d'argent sont de plus en plus utilisées dans les objets de consommation courante ainsi que dans les dispositifs médicaux pour leur activité biocide, qui est due au relargage d'ions Ag(I) au cours du temps. Le recul sur ces nano-objets et en particulier sur leur innocuité n'est toujours pas suffisant et les études sur leur transformation et leur impact in vivo sont sujets à d’intenses recherches. En effet, le devenir dans l’organisme des macro- et micro-matériaux étudiés classiquement n’est pas le même que celles des nanomatériaux. Les nanoparticules d’argent illustrent bien cette problématique : l’argent soluble injecté par voie intraveineuse est éliminé plus rapidement que la même quantité d’argent injectée sous forme nanoparticulaire. De plus, la concentration en argent retrouvée dans le sang et les organes est dix fois supérieure lorsque les nanoparticules d’argent sont injectées plutôt qu’ingérées. C'est pourquoi le développement de produits implantatoires qui se retrouvent donc en contact direct avec l’organisme, et qui contiennent des nanoparticules d’argent doit prendre en compte les risques associés, ce qui peut se faire par une approche Safer-by-design.Une des composantes principales du développement Safer-by-design concerne la fonctionnalisation des nano-objets. L’affinité des thiolates pour l’ion Ag(I) étant très forte, des ligands thiolés pourraient donc constituer une piste pour la fonctionnalisation des nanoparticules d’argent. Néanmoins, il est connu que les molécules thiolées conduisent à différents comportements allant de la dissolution de la nanoparticule d’argent en ions Ag(I) à la simple passivation de la surface de la nanoparticule ce qui peut entrainer la perte de son activité biocide.Ainsi, l’Ecoconception de Nouveaux Agents Biocides à base de Nanoparticules d’Argent à Enrobage Bio-inspiré avait pour objectif principal de poser les bases conceptuelles du développement d’un agent biocide Safer-by-design constitué de nanoparticules d’argent et de molécules thiolées en se positionnant à l’interface de plusieurs disciplines.Le développement de ce projet a nécessité d’étudier la réactivité de diverses molécules biologiques ou bio-inspirées thiolées avec les nanoparticules d’argent. Ainsi, nous avons mis en évidence l’importance de la pré-organisation architecturale des biomolécules dans la cinétique de dissolution, ainsi que le nombre de thiols libres dans la molécule. Dans le cas de composés induisant la dissolution des nanoparticules, sa cinétique augmente avec le nombre de thiols libres présents sur la molécule, et avec la pré-organisation du site de liaison du métal. Le projet principal de cette thèse a ensuite mené à la preuve de concept recherchée, avec le développement d’un nouvel agent biocide composé de nanoparticules d’argents pontées entre elles par un ligand thiolé tripode symétrique qui est le mime chimique d’un site de liaison d’une métallothionéine. Ces assemblages de nanoparticules se sont montrés actifs contre les bactéries (E. coli) et moins toxiques sur les cellules eucaryotes (HepG2), malgré une entrée dans les cellules similaire. Enfin, un criblage a également été réalisé avec des polyéthylèneglycols possédant un à huit thiols et des longueurs de polymères variables dans le but d’essayer de rationaliser les différences de comportement des nanoparticules d’argent en présence des molécules thiolées. Ce travail, a conduit à l’observation des comportements très variés qui vont permettre d’explorer de nouvelles voies de développements de biocides à base d’assemblages de nanoparticules médiés par des liaisons thiol – Ag(I).L’ensemble de ce travail de thèse a donc permis à la fois un travail très fondamental sur la réactivité des thiols vis-à-vis des atomes d’argent à la surface des nanoparticules et au développement de produits à potentiel applicatif, les assemblages de nanoparticules d’argent qui sont des biocides Safer-by-design.Silver nanoparticles are increasingly used in everyday consumer goods as well as in medical devices for their biocidal activity, which is due to the release of Ag(I) ions over time. The hindsight on these nano-objects and, in particular, on their safety is still not sufficient and studies on their transformation and their impact in vivo is currently an intense research field. Indeed, the fate in the body of macro- and micro-materials studied classically is not the same as for nanomaterials. The case of the silver nanoparticles illustrates this problem: the soluble silver injected intravenously is eliminated faster than the same amount of silver injected in nanoparticular form. Moreover, the concentration of silver found in the bloodstream and organs is ten times higher when silver nanoparticles are injected rather than ingested. The development of silver nanoparticle-containing implanted devices, that get in direct contact with the body, must thus take into account the related risks. A Safer-by-design approach could be a way to solve this issue.One of the main components of Safer-by-design development is the functionalization of nano-objects. The affinity of the thiolates for Ag(I) ions is very high, which would make thiolated ligands a good tool for silver nanoparticle functionalization. However, it is known that the thiolated molecules lead to different behaviors, ranging from the dissolution of silver nanoparticles into Ag(I) ions to the simple passivation of the surface of the nanoparticles, which leads to the loss of their biocidal activity.The Ecodesign of New Biocidal Agents based on Silver Nanoparticles and Bio-inspired Coating is therefore at the interface of several research areas and its main objective was to lay the conceptual foundations for the development of a Safer-by-design biocidal agent based on the interaction between silver nanoparticles and thiolated molecules.The development of this project required to study the reactivity of various biological or bio-inspired thiolated molecules with silver nanoparticles. First of all, we have highlighted the importance of the architectural pre-organization of biomolecules in the dissolution kinetics, as well as the role of the number of free thiols in the molecule. In the case of molecules inducing the dissolution of the nanoparticles, its kinetics increases with the number of free thiols present on the molecule and with the pre-organization of the metal binding site. In a second time, the main project of this thesis was the development of a proof of concept of a new biocidal agent composed of silver nanoparticles bridged together via a thiolated ligand, which is the chemical mimic of one binding site of a metallothionein. These nanoparticle assemblies were active against bacteria (E. coli) and less toxic than silver nanoparticles on eukaryote cells (HepG2), despite a similar cellular entry. Finally, a screening was performed with polyethylene glycols having two to eight thiols and varying polymer lengths in an attempt to rationalize the differences in the behavior of silver nanoparticles in the presence of the thiolated molecules. This ongoing work leads to various behaviors that will enable to explore novel ways for the development of biocidal based on nanoparticles assemblies mediated by thiol – Ag(I) bonds.Therefore, this overall PhD work allows performing both very fundamental researches concerning the reactivity of thiols with surface silver atoms of the nanoparticles and the development of products with application potential, silver nanoparticle assemblies that are Safer-by-design biocide

    Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies

    No full text
    International audienceSilver nanoparticles (AgNPs) are exponentially used in various consumer products including medical devices. This production leads to an increasing human exposure to silver in different forms. Indeed, AgNPs are subject to various transformations in aqueous aerobic conditions that trigger the production of Ag(I) species. The main environmental transformation produces the non-toxic species silver sulfide. Transformations occurring in mammals are more diverse and mainly depend on the interaction of AgNPs with thiol, chloride and proteins. Any of these species have a different impact on AgNPs and induces AgNP dissolution into Ag(I) species, aggregation and/or stabilization. The transformations occurring also depend on the exposure route. The main one is dietary but medical exposure is also growing with the massive use of nanosilver as biocide in medical devices. For the former, AgNP modifications and Ag distribution has been extensively studied using in vitro and in vivo models, while data related to medical use of nanosilver are scarce. However, most of the in vitro and in vivo data often remain inconsistent. In this review, we describe both in vitro, in cellulo and in vivo data about AgNP transformations, silver speciation and biodistribution. We try to reconcile all these data and describe the latest methods for the future studies of AgNP fate in mammals

    Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom

    No full text
    International audienceGrafting thiol-bearing molecules at the surface of silver nano-particles (AgNPs) is a successful strategy to tune their optical and antibacterial properties. The capping layer generated from self-assembly of the ligands at the nanoparticle surface determines the range of possible applications of the resulting material. In particular, direct grafting of the thiol heads to surface Ag(I) can occur, with various hybridizations of the S atom, sp versus sp 3. Alternatively, a passivating Ag 2 S layer can form. We make use of S K-edge X-ray absorption near edge structure (XANES) and synchrotron-based X-ray photoelectron spectroscopy (XPS) to probe the metal−ligand interface in different thiol-capped AgNPs. The use of cryogenic conditions for XAS analyses reveals a peculiar spectral signature for thiolates chemisorbed on the AgNPs surface, unambiguously distinguished from that of Ag 2 S. Ab initio simulations of XANES spectra and XPS analyses are used to predict the grafting mode, suggesting that different ligand architectures promote slightly different proportions of sp/sp 3 sites, and a dramatic variability in the stability of the nanomaterial that can evolve toward either self-assembly or dissolution of the AgNPs

    Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules

    No full text
    International audienceThe widespread use of silver nanoparticles (AgNPs) as biocides in consumer products raises concerns about their toxicity to humans and their environmental impact. The biocidal activity is mediated by the release of Ag(i). However, this metal ion is universally toxic to living organisms. For instance, Ag(i) tightly binds to thiol functional groups that are abundant and essential to any cell type. The first intracellular source of thiol, glutathione, is crucial for the control of the redox balance of cells. Dissolution studies using monothiol-containing biomolecules such as glutathione or cysteine provided controversial results, while the impact of polythiol molecules on AgNP behavior remains unexplored. In order to gain insights into polythiol-assisted AgNP dissolution at constant and equal thiol:Ag molarity, we studied the impact of glutathione, phytochelatins with 2, 3 or 6 thiols, and copper chaperone Atx1 and its metal binding site mimic P-2, both containing 2 pre-oriented thiols to chelate Cu(i). The AgNP behavior was monitored by various complementary physicochemical approaches. We demonstrated unambiguously that, under aerobic conditions, these molecules favor AgNP dissolution into Ag(i) ions with a rate that increases with the number of thiols per molecule as well as with their pre-orientation. We also observed that AgNP dissolution into Ag(i) soluble species occurs progressively for the whole AgNP population. This work highlights how transformations of AgNPs are triggered by biomolecules and lays the basis for a deeper understanding of their fate in biological/environmental systems

    Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?

    No full text
    The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements

    Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?

    Get PDF
    The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.publishedVersio

    Safer-by-design biocides made of tri-thiol bridged silver nanoparticle assemblies

    No full text
    International audienceSilver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(I) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity. Altogether, widespread use of AgNPs leads to bacterial resistance and safety concerns for humans and the environment. There is thus a crucial need for improvement. Herein, a proof of concept for a novel biocide based on AgNP assemblies bridged together by a tri-thiol bioinspired ligand is presented. The final nanomaterial is stable and less sensitive to chemical environments with AgNPs completely covered by organic molecules tightly bound via their thiol functions. Therefore, these AgNP assemblies can be considered as safer-by-design and innovative biocides, since they deliver a sufficient amount of Ag(I) for biocidal activity with no release of AgNPs, which are insensitive to transformations in the nanomaterial

    Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database

    Get PDF
    International audienceBackground:Diet is a major modifiable risk factor for human health and overall consumption patterns affect planetary health. We aimed to quantify global, regional, and national consumption levels of animal-source foods (ASF) to inform intervention, surveillance, and policy priorities.Methods:Individual-level dietary surveys across 185 countries conducted between 1990 and 2018 were identified, obtained, standardised, and assessed among children and adults, jointly stratified by age, sex, education level, and rural versus urban residence. We included 499 discrete surveys (91·2% nationally or subnationally representative) with data for ASF (unprocessed red meat, processed meat, eggs, seafood, milk, cheese, and yoghurt), comprising 3·8 million individuals from 134 countries representing 95·2% of the world population in 2018. We used Bayesian hierarchical models to account for differences in survey methods and representativeness, time trends, and input data and modelling uncertainty, with five-fold cross-validation.Findings:In 2018, mean global intake per person of unprocessed red meat was 51 g/day (95% uncertainty interval [UI] 48–54; region-specific range 7–114 g/day); 17 countries (23·9% of the world's population) had mean intakes of at least one serving (100 g) per day. Global mean intake of processed meat was 17 g/day (95% UI 15–21 g/day; region-specific range 3–54 g/day); seafood, 28 g/day (27–30 g/day; 12–44 g/day); eggs, 21 g/day (18–24 g/day; 6–35 g/day); milk 88 g/day (84–93 g/day; 45–185 g/day); cheese, 8 g/day (8–10 g/day; 1–34 g/day); and yoghurt, 20 g/day (17–23 g/day; 7–84 g/day). Mean national intakes were at least one serving per day for processed meat (≥50 g/day) in countries representing 6·9% of the global population; for cheese (≥42 g/day) in 2·3%; for eggs (≥55 g/day) in 0·7%; for milk (≥245 g/day) in 0·3%; for seafood (≥100 g/day) in 0·8%; and for yoghurt (≥245 g/day) in less than 0·1%. Among the 25 most populous countries in 2018, total ASF intake was highest in Russia (5·8 servings per day), Germany (3·8 servings per day), and the UK (3·7 servings per day), and lowest in Tanzania (0·9 servings per day) and India (0·7 servings per day). Global and regional intakes of ASF were generally similar by sex. Compared with children, adults generally consumed more unprocessed red meat, seafood and cheese, and less milk; energy-adjusted intakes of other ASF were more similar. Globally, ASF intakes (servings per week) were higher among more-educated versus less-educated adults, with greatest global differences for milk (0·79), eggs (0·47), unprocessed red meat (0·42), cheese (0·28), seafood (0·28), yoghurt (0·22), and processed meat (0·21). This was also true for urban compared to rural areas, with largest global differences (servings per week) for unprocessed red meat (0·47), milk (0·38), and eggs (0·20). Between 1990 and 2018, global intakes (servings per week) increased for unprocessed red meat (1·20), eggs (1·18), milk (0·63), processed meat (0·50), seafood (0·44), and cheese (0·14).Interpretation:Our estimates of ASF consumption identify populations with both lower and higher than optimal intakes. These estimates can inform the targeting of intervention, surveillance, and policy priorities relevant to both human and planetary health
    corecore