10,685 research outputs found

    Fast computation of effective diffusivities using a semi-analytical solution of the homogenization boundary value problem for block locally-isotropic heterogeneous media

    Full text link
    Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a grid of blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.Comment: 29 pages, 4 figures, 5 table

    Vorticity cutoff in nonlinear photonic crystals

    Full text link
    Using group theory arguments, we demonstrate that, unlike in homogeneous media, no symmetric vortices of arbitrary order can be generated in two-dimensional (2D) nonlinear systems possessing a discrete-point symmetry. The only condition needed is that the non-linearity term exclusively depends on the modulus of the field. In the particular case of 2D periodic systems, such as nonlinear photonic crystals or Bose-Einstein condensates in periodic potentials, it is shown that the realization of discrete symmetry forbids the existence of symmetric vortex solutions with vorticity higher than two.Comment: 4 pages, 5 figures; minor changes in address and reference

    The Torsion of Members Having Sections Common in Aircraft Construction

    Get PDF
    Within recent years a great variety of approximate torsion formulas and drafting-room processes have been advocated. In some of these, especially where mathematical considerations are involved, the results are extremely complex and are not generally intelligible to engineers. The principal object of this investigation was to determine by experiment and theoretical investigation how accurate the more common of these formulas are and on what assumptions they are founded and, if none of the proposed methods proved to be reasonable accurate in practice, to produce simple, practical formulas from reasonably correct assumptions, backed by experiment. A second object was to collect in readily accessible form the most useful of known results for the more common sections. Formulas for all the important solid sections that have yielded to mathematical treatment are listed. Then follows a discussion of the torsion of tubular rods with formulas both rigorous and approximate

    Elastic Instability of Members Having Sections Common in Aircraft Construction

    Get PDF
    Two fundamental problems of elastic stability are discussed in this report. In part one formulas are given for calculating the critical stress at which a thin, outstanding flange of a compression member will either wrinkle into several waves or form into a single half wave and twist the member about its longitudinal axis. A mathematical study of the problem, which together with experimental work has led to these formulas, is given in an appendix. Results of test substantiating the recommended formulas are also presented. In part two the lateral buckling of beams is discussed. The results of a number of mathematical studies of this phenomenon have been published prior to this writing, but very little experimentally determined information relating to the problem has been available heretofore. Experimental verification of the mathematical deductions is supplied

    Preferred orientation of n-hexane crystallized in silicon nanochannels: A combined x-ray diffraction and sorption isotherm study

    Full text link
    We present an x-ray diffraction study on n-hexane in tubular silicon channels of approximately 10 nm diameter both as a function of the filling fraction f of the channels and as a function of temperature. Upon cooling, confined n-hexane crystallizes in a triclinic phase typical of the bulk crystalline state. However, the anisotropic spatial confinement leads to a preferred orientation of the confined crystallites, where the crystallographic direction coincides with the long axis of the channels. The magnitude of this preferred orientation increases with the filling fraction, which corroborates the assumption of a Bridgman-type crystallization process being responsible for the peculiar crystalline texture. This growth process predicts for a channel-like confinement an alignment of the fastest crystallization direction parallel to the long channel axis. It is expected to be increasingly effective with the length of solidifying liquid parcels and thus with increasing f. In fact, the fastest solidification front is expected to sweep over the full silicon nanochannel for f=1, in agreement with our observation of a practically perfect texture for entirely filled nanochannels

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure

    Spatial fluctuations in an optical parametric oscillator below threshold with an intracavity photonic crystal

    Get PDF
    We show how to control spatial quantum correlations in a multimode degenerate optical parametric oscillator type I below threshold by introducing a spatially inhomogeneous medium, such as a photonic crystal, in the plane perpendicular to light propagation. We obtain the analytical expressions for all the correlations in terms of the relevant parameters of the problem and study the number of photons, entanglement, squeezing, and twin beams. Considering different regimes and configurations we show the possibility to tune the instability thresholds as well as the quantumness of correlations by breaking the translational invariance of the system through a photonic crystal modulation.Comment: 12 pages, 7 figure

    Ab initio wavefunction based methods for excited states in solids: correlation corrections to the band structure of ionic oxides

    Full text link
    Ab initio wavefunction based methods are applied to the study of electron correlation effects on the band structure of oxide systems. We choose MgO as a prototype closed-shell ionic oxide. Our analysis is based on a local Hamiltonian approach and performed on finite fragments cut from the infinite solid. Localized Wannier functions and embedding potentials are obtained from prior periodic Hartree-Fock (HF) calculations. We investigate the role of various electron correlation effects in reducing the HF band gap and modifying the band widths. On-site and nearest-neighbor charge relaxation as well as long-range polarization effects are calculated. Whereas correlation effects are essential for computing accurate band gaps, we found that they produce smaller changes on the HF band widths, at least for this material. Surprisingly, a broadening effect is obtained for the O 2p valence bands. The ab initio data are in good agreement with the energy gap and band width derived from thermoreflectance and x-ray photoemission experiments. The results show that the wavefunction based approach applied here allows for well controlled approximations and a transparent identification of the microscopic processes which determine the electronic band structure

    A topological charge selection rule for phase singularities

    Get PDF
    We present an study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified. The role played by the underlying symmetry is emphasized. An effective model describing the short range dynamics of the vortex clusters has been designed. A method to engineer any desired configuration of clusters of phase singularities is proposed. Its flexibility to create and control clusters of vortices is discussed.Comment: 4 pages, 3 figure
    corecore