We present an x-ray diffraction study on n-hexane in tubular silicon channels
of approximately 10 nm diameter both as a function of the filling fraction f of
the channels and as a function of temperature. Upon cooling, confined n-hexane
crystallizes in a triclinic phase typical of the bulk crystalline state.
However, the anisotropic spatial confinement leads to a preferred orientation
of the confined crystallites, where the crystallographic direction
coincides with the long axis of the channels. The magnitude of this preferred
orientation increases with the filling fraction, which corroborates the
assumption of a Bridgman-type crystallization process being responsible for the
peculiar crystalline texture. This growth process predicts for a channel-like
confinement an alignment of the fastest crystallization direction parallel to
the long channel axis. It is expected to be increasingly effective with the
length of solidifying liquid parcels and thus with increasing f. In fact, the
fastest solidification front is expected to sweep over the full silicon
nanochannel for f=1, in agreement with our observation of a practically perfect
texture for entirely filled nanochannels