236 research outputs found
Tackling intraspecific genetic structure in distribution models better reflects species geographical range
Genetic diversity provides insight into heterogeneous demographic and adaptive history across organisms' distribution ranges. For this reason, decomposing single species into genetic units may represent a powerful tool to better understand biogeographical patterns as well as improve predictions of the effects of GCC (global climate change) on biodiversity loss. Using 279 georeferenced Iberian accessions, we used classes of three intraspecific genetic units of the annual plant Arabidopsis thaliana obtained from the genetic analyses of nuclear SNPs (single nucleotide polymorphisms), chloroplast SNPs, and the vernalization requirement for flowering. We used SDM (species distribution models), including climate, vegetation, and soil data, at the whole-species and genetic-unit levels. We compared model outputs for present environmental conditions and with a particularly severe GCC scenario. SDM accuracy was high for genetic units with smaller distribution ranges. Kernel density plots identified the environmental variables underpinning potential distribution ranges of genetic units. Combinations of environmental variables accounted for potential distribution ranges of genetic units, which shrank dramatically with GCC at almost all levels. Only two genetic clusters increased their potential distribution ranges with GCC. The application of SDM to intraspecific genetic units provides a detailed picture on the biogeographical patterns of distinct genetic groups based on different genetic criteria. Our approach also allowed us to pinpoint the genetic changes, in terms of genetic background and physiological requirements for flowering, that Iberian A. thaliana may experience with a GCC scenario applying SDM to intraspecific genetic units
Morphological and molecular characterization of adults and larvae of Crassicauda spp. (Nematoda: Spirurida) from Mediterranean fin whales Balaenoptera physalus (Linnaeus, 1758)
Crassicauda boopis is known to infect the kidneys and vascular system of mysticetes included Balaenoptera physalus and has been recently reported in Mediterranean waters. Identification at the species level relies on the observation of morphological features of the adult parasites, but field conditions during necropsy and the massive reaction of the host's immune system often prevent optimal conservation of the extremities. Moreover, larval stages of Crassicauda have never been described and no sequences are available in public databases to help such identification. Adult and larvae of Crassicauda were isolated from four specimens of B. physalus and studied with morphological and molecular techniques. Specimens of C. anthonyi, C. grampicola and Crassicauda sp. isolated from Ziphius cavirostris, Grampus griseus, Stenella coeruleoalba and Tursiops truncatus respectively were studied as well. Sequences of nuclear markers 18S and ITS-2 and of mitochondrial gene cox1 were obtained and phylogenetic relationships within the genus Crassicauda were analysed. Analysis of the ITS2 grouped the dif- ferent species in accordance with morphological identification, as already evidenced in literature for other Spirurida. A higher intra-specific variability was observed for the cox1 gene, for which two species (C. grampicola and C. anthonyi) did not appear as monophyletic in the tree. Well-developed non-attached larval specimens in the intestinal lumen of a whale calf were molecularly identified as C. boopis, allowing new insights on the life cycle of this species. This work broadens the genetic database on cetaceans parasites, allowing species identi- fication even in challenging field conditions or in poor conservation of the samples; moreover, the first mor- phological description of C. boopis larvae is provided
Unravelling plant diversification: Intraspecific genetic differentiation in hybridizing Anacyclus species in the western Mediterranean Basin
Premise: The interfertile species Anacyclus clavatus, A. homogamos, and A. valentinus represent a plant complex coexisting in large anthropic areas of the western Mediterranean Basin with phenotypically mixed populations exhibiting a great floral variation. The goal of this study was to estimate the genetic identity of each species, to infer the role of hybridization in the observed phenotypic diversity, and to explore the effect of climate on the geographic distribution of species and genetic clusters. Methods: We used eight nuclear microsatellites to genotype 585 individuals from 31 populations of three Anacyclus species for population genetic analyses by using clustering algorithms based on Bayesian models and ordination methods. In addition, we used ecological niche models and niche overlap analyses for both the species and genetic clusters. We used an expanded data set, including 721 individuals from 129 populations for ecological niche models of the genetic clusters. Results: We found a clear correspondence between species and genetic clusters, except for A. clavatus that included up to three genetic clusters. We detected individuals with admixed genetic ancestry in A. clavatus and in mixed populations. Ecological niche models predicted similar distributions for species and genetic clusters. For the two specific genetic clusters of A. clavatus, ecological niche models predicted remarkably different areas. Conclusions: Gene flow between Anacyclus species likely explains phenotypic diversity in contact areas. In addition, we suggest that introgression could be involved in the origin of one of the two A. clavatus genetic clusters, which also showed ecological differentiationPID2019‐104135GB‐I00, PID2021‐124187NB‐I0
Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions
Natural history collections (NHCs) represent an enormous and largely untapped wealth of information on the Earth's biota, made available through GBIF as digital preserved specimen records. Precise knowledge of where the specimens were collected is paramount to rigorous ecological studies, especially in the field of species distribution modelling. Here, we present a first comprehensive analysis of georeferencing quality for all preserved specimen records served by GBIF, and illustrate the impact that coordinate uncertainty may have on predicted potential distributions. We used all GBIF preserved specimen records to analyse the availability of coordinates and associated spatial uncertainty across geography, spatial resolution, taxonomy, publishing institutions and collection time. We used three plant species across their native ranges in different parts of the world to show the impact of uncertainty on predicted potential distributions. We found that 38% of the 180+ million records provide coordinates only and 18% coordinates and uncertainty. Georeferencing quality is determined more by country of collection and publishing than by taxonomic group. Distinct georeferencing practices are more determinant than implicit characteristics and georeferencing difficulty of specimens. Availability and quality of records contrasts across world regions. Uncertainty values are not normally distributed but peak at very distinct values, which can be traced back to specific regions of the world. Uncertainty leads to a wide spectrum of range sizes when modelling species distributions, potentially affecting conclusions in biogeographical and climate change studies. In summary, the digitised fraction of the world's NHCs are far from optimal in terms of georeferencing and quality mainly depends on where the collections are hosted. A collective effort between communities around NHC institutions, ecological research and data infrastructure is needed to bring the data on a par with its importance and relevance for ecological research
A Genotyping-by-Sequencing approach brings new insights into the population structure and local adaptation of Western Mediterranean Oaks
XIX ENBE Annual Meeting of the Portuguese Association for Evolutionary Biology, 18-19 December 2023, Lisboninfo:eu-repo/semantics/publishedVersio
Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy
Mass strandings of sperm whales (Physeter macrocephalus) are rare in the Mediterranean Sea. Nevertheless, in 2014 a pod of 7 specimens stranded alive along the Italian coast of the Central Adriatic Sea: 3 individuals died on the beach after a few hours due to internal damages induced by prolonged recumbency; the remaining 4 whales were refloated after great efforts. All the dead animals were genetically related females; one was pregnant. All the animals were infected by dolphin morbillivirus (DMV) and the pregnant whale was also affected by a severe nephropathy due to a large kidney stone. Other analyses ruled out other possible relevant factors related to weather conditions or human activities. The results of multidisciplinary post-mortem analyses revealed that the 7 sperm whales entered the Adriatic Sea encountering adverse weather conditions and then kept heading northward following the pregnant but sick leader of the pod, thereby reaching the stranding site. DMV infection most likely played a crucial role in impairing the health condition and orientation abilities of the whales. They did not steer back towards deeper waters, but eventually stranded along the Central Adriatic Sea coastline, a real trap for sperm whales
Variation and plasticity in life-history traits and fitness of wild Arabidopsis thaliana populations are not related to their genotypic and ecological diversity
[Background]: Despite its implications for population dynamics and evolution, the relationship between genetic
and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in lifehistory traits and ftness of the annual plant Arabidopsis thaliana in two common garden experiments that difered in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity.[Results]: Low and high genotypic and ecological diversity was found in edge and core Iberian environments,
respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity
may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diver‑ sity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments.[Conclusions]: Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.This research was funded by grants CGL2016-77720-P and PID2019-104135GB-I00 to FXP, and grant PID2022-136893NB-I00 to CA-B, from the Agencia Estatal de Investigación of Spain (AEI/10.13039/501100011033) and the Fondo Europeo de Desarrollo Regional (FEDER, UE).Peer reviewe
- …