68 research outputs found

    Systematic reduction of Hyperspectral Images for high-throughput Plastic Characterization

    Full text link
    Hyperspectral Imaging (HSI) combines microscopy and spectroscopy to assess the spatial distribution of spectroscopically active compounds in objects, and has diverse applications in food quality control, pharmaceutical processes, and waste sorting. However, due to the large size of HSI datasets, it can be challenging to analyze and store them within a reasonable digital infrastructure, especially in waste sorting where speed and data storage resources are limited. Additionally, as with most spectroscopic data, there is significant redundancy, making pixel and variable selection crucial for retaining chemical information. Recent high-tech developments in chemometrics enable automated and evidence-based data reduction, which can substantially enhance the speed and performance of Non-Negative Matrix Factorization (NMF), a widely used algorithm for chemical resolution of HSI data. By recovering the pure contribution maps and spectral profiles of distributed compounds, NMF can provide evidence-based sorting decisions for efficient waste management. To improve the quality and efficiency of data analysis on hyperspectral imaging (HSI) data, we apply a convex-hull method to select essential pixels and wavelengths and remove uninformative and redundant information. This process minimizes computational strain and effectively eliminates highly mixed pixels. By reducing data redundancy, data investigation and analysis become more straightforward, as demonstrated in both simulated and real HSI data for plastic sorting

    Mono/Multi-material Characterization Using Hyperspectral Images and Multi-Block Non-Negative Matrix Factorization

    Full text link
    Plastic sorting is a very essential step in waste management, especially due to the presence of multilayer plastics. These monomaterial and multimaterial plastics are widely employed to enhance the functional properties of packaging, combining beneficial properties in thickness, mechanical strength, and heat tolerance. However, materials containing multiple polymer species need to be pretreated before they can be recycled as monomaterials and therefore should not end up in monomaterial streams. Industry 4.0 has significantly improved materials sorting of plastic packaging in speed and accuracy compared to manual sorting, specifically through Near Infrared Hyperspectral Imaging (NIRHSI) that provides an automated, fast, and accurate material characterization, without sample preparation. Identification of multimaterials with HSI however requires novel dedicated approaches for chemical pattern recognition. Non negative Matrix Factorization, NMF, is widely used for the chemical resolution of hyperspectral images. Chemically relevant model constraints may make it specifically valuable to identify multilayer plastics through HSI. Specifically, Multi Block Non Negative Matrix Factorization (MBNMF) with correspondence among different chemical species constraint may be used to evaluate the presence or absence of particular polymer species. To translate the MBNMF model into an evidence based sorting decision, we extended the model with an F test to distinguish between monomaterial and multimaterial objects. The benefits of our new approach, MBNMF, were illustrated by the identification of several plastic waste objects

    Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling-Sliding Contacts

    Get PDF
    The effect of N-Tallow-1,3-DiaminoPropane (TDP) on friction, rolling wear and micropitting has been investigated with the ultimate objective of developing lubricants with no or minimal environmental impact. A Mini Traction Machine (MTM-SLIM) has been utilised in order to generate tribofilms and observe the effect of TDP on anti-wear tribofilm formation and friction. Micropitting was induced on the surface of specimens using a MicroPitting Rig (MPR). The X-ray Photoelectron Spectroscopy (XPS) surface analytical technique has been employed to investigate the effect of TDP on the chemical composition of the tribofilm while Atomic Force Microscopy (AFM) was used to generate high resolution topographical images of the tribofilms formed on the MTM discs. Experimental and analytical results showed that TDP delays the Zinc DialkylDithioPhosphate (ZDDP) anti-wear tribofilm formation. TDP in combination with ZDDP induces a thinner and smoother anti-wear tribofilm with a modified chemical structure composed of mixed Fe/Zn (poly)phosphates. The sulphide contribution to the tribofilm and oxygen-to-phosphorous atomic concentration ratio are greater in the bulk of the tribofilm derived from a combination of TDP and ZDDP compared to a tribofilm derived from ZDDP alone. Surface analysis showed that utilising TDP effectively mitigates micropitting wear in the test conditions used in this study. Reduction of micropitting, relevant to rolling bearing applications, can be attributed to the improved running-in procedure, reduced friction, formation of a smoother tribofilm and modification of the tribofilm composition induced by TDP

    Frequent mutated B2M, EZH2, IRF8, and TNFRSF14 in primary bone diffuse large B-cell lymphoma reflect a GCB phenotype

    Get PDF
    Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This retrospective study elucidates the currently unknown genetic background of a large clinically well-annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. A total of 103 patients with O-DLBCL were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin was determined by immunohistochemistry and gene-expression profiling (GEP) using (extended)-NanoString/Lymph2Cx analysis. Mutational profiles were identified with targeted next-generation deep sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCLs, were predominantly classified as GCB phenotype based on immunohistochemistry (74%) and NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-NanoString/Lymph2Cx revealed significantly different GEP clusters for PB-DLBCL as opposed to NO-DLBCL-GCB (P < .001). Expression levels of 23 genes of 2 different targeted GEP panels indicated a centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB exhibited a centroblast-like constitution. PB-DLBCL had significantly more frequent mutations in four GCB-associated genes (ie, B2M, EZH2, IRF8, TNFRSF14) compared with NO-DLBCL-GCB (P = .031, P = .010, P = .047, and P = .003, respectively). PB-DLBCL, with its corresponding specific mutational profile, was significantly associated with a superior survival compared with equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P = .016). This study is the first to show that PB-DLBCL is characterized by a GCB phenotype, with a centrocyte-like GEP pattern and a GCB-associated mutational profile (both involved in immune surveillance) and a favorable prognosis. These novel biology-associated features provide evidence that PB-DLBCL represents a distinct extranodal DLBCL entity, and its specific mutational landscape offers potential for targeted therapies (eg, EZH2 inhibitors)

    Guillain-Barre syndrome after SARS-CoV-2 infection in an international prospective cohort study

    Get PDF
    In the wake of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, an increasing number of patients with neurological disorders, including Guillain-Barre syndrome (GBS), have been reported following this infection. It remains unclear, however, if these cases are coincidental or not, as most publications were case reports or small regional retrospective cohort studies. The International GBS Outcome Study is an ongoing prospective observational cohort study enrolling patients with GBS within 2 weeks from onset of weakness. Data from patients included in this study, between 30 January 2020 and 30 May 2020, were used to investigate clinical and laboratory signs of a preceding or concurrent SARS-CoV-2 infection and to describe the associated clinical phenotype and disease course. Patients were classified according to the SARS-CoV-2 case definitions of the European Centre for Disease Prevention and Control and laboratory recommendations of the World Health Organization. Forty-nine patients with GBS were included, of whom eight (16%) had a confirmed and three (6%) a probable SARS-CoV-2 infection. Nine of these 11 patients had no serological evidence of other recent preceding infections associated with GBS, whereas two had serological evidence of a recent Campylobacter jejuni infection. Patients with a confirmed or probable SARS-CoV-2 infection frequently had a sensorimotor variant 8/11 (73%) and facial palsy 7/11 (64%). The eight patients who underwent electrophysiological examination all had a demyelinating subtype, which was more prevalent than the other patients included in the same time window [14/30 (47%), P = 0.012] as well as historical region and age-matched control subjects included in the International GBS Outcome Study before the pandemic [23/44 (52%), P = 0.016]. The median time from the onset of infection to neurological symptoms was 16 days (interquartile range 12-22). Patients with SARS-CoV-2 infection shared uniform neurological features, similar to those previously described in other post-viral GBS patients. The frequency (22%) of a preceding SARS-CoV-2 infection in our study population was higher than estimates of the contemporaneous background prevalence of SARS-CoV-2, which may be a result of recruitment bias during the pandemic, but could also indicate that GBS may rarely follow a recent SARS-CoV-2 infection. Consistent with previous studies, we found no increase in patient recruitment during the pandemic for our ongoing International GBS Outcome Study compared to previous years, making a strong relationship of GBS with SARS-CoV-2 unlikely. A case-control study is required to determine if there is a causative link or not

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∌50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS

    Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∌50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS

    Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data

    Get PDF
    We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∌90%\sim 90 \%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV16\,\mathrm{TeV} to 2.6 PeV2.6\,\mathrm{PeV}, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be Îł=2.53±0.07\gamma=2.53\pm0.07 and a flux normalization for each neutrino flavor of ϕastro=1.66−0.27+0.25\phi_{astro} = 1.66^{+0.25}_{-0.27} at E0=100 TeVE_{0} = 100\, \mathrm{TeV}, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices γ≀2.28\gamma\leq2.28 at ≄3σ\ge3\sigma significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below ∌100 TeV\sim100\,{\rm{TeV}} compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value ≄0.06\ge 0.06). The sizable and smooth flux measured below ∌100 TeV\sim 100\,{\rm{TeV}} remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.Comment: 4 figures, 4 tables, includes supplementary materia

    IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog

    Full text link
    Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 GeV cm−2\mathrm{GeV~cm^{-2}}. We also set limits on the total isotropic equivalent energy, EisoE_{\mathrm{iso}}, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 ×\times 1051^{51} - 1.8 ×\times 1055^{55} erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time
    • 

    corecore