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Abstract:
Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This
retrospective study elucidates the currently unknown genetic background of a large clinically well-
annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. 103 O-DLBCL patients
were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal center B-cell
phenotype (NO-DLBCL-GCB). Cell-of-origin (COO) was determined by immunohistochemistry and gene-
expression-profiling (GEP) using (extended)-NanoString/Lymph2Cx. Mutational profiles were identified
with targeted next-generation deep-sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs,
including 34 PB-DLBCL, were predominantly classified as GCB-phenotype based on immunohistochemistry
(74%) and NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-
NanoString/Lymph2Cx demonstrated significantly different GEP-clusters for PB-DLBCL as opposed to NO-
DLBCL-GCB (P<0.001). Expression levels of 23 genes of two different targeted GEP-panels, indicated a
centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB showed a centroblast-like constitution. PB-
DLBCL had significantly more frequent mutations in four GCB-associated genes, i.e. B2M, EZH2, IRF8, and
TNFRSF14, compared to NO-DLBCL-GCB (P=0.031, P=0.010, P=0.047, and P=0.003). PB-DLBCL with its
corresponding specific mutational profile were significantly associated with a superior overall survival
compared to equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P=0.011). This study is the first to
demonstrate that PB-DLBCL is characterized by a GCB-phenotype, with a centrocyte-like GEP-pattern and a
GCB-associated mutational profile (both involved in immune surveillance) and a favorable prognosis.
These novel biology-associated features provide evidence that PB-DLBCL represents a distinct extranodal
DLBCL entity and its specific mutational landscape holds potential for targeted therapies (e.g. EZH2-
inhibitors).
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Key points 
Main point #1: PB-DLBCL is characterized by GCB-phenotype, with centrocyte-like GEP-pattern, GCB-

associated mutational profile and favorable prognosis. 

Main point #2: These features indicates PB-DLBCL as a distinct extranodal DLBCL entity and its 

specific mutations holds potential for targeted therapies. 

Abstract  
Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This 

retrospective study elucidates the currently unknown genetic background of a large clinically well-

annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. 103 O-DLBCL 

patients were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal 

center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin (COO) was determined by 

immunohistochemistry and gene-expression-profiling (GEP) using (extended)-NanoString/Lymph2Cx. 

Mutational profiles were identified with targeted next-generation deep-sequencing, including 52 B-

cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCL, were predominantly classified as 

GCB-phenotype based on immunohistochemistry (74%) and NanoString analysis (88%). 

Unsupervised hierarchical clustering of an extended-NanoString/Lymph2Cx demonstrated 

significantly different GEP-clusters for PB-DLBCL as opposed to NO-DLBCL-GCB (P<0.001). Expression 

levels of 23 genes of two different targeted GEP-panels, indicated a centrocyte–like phenotype for 

PB-DLBCL, whereas NO-DLBCL-GCB showed a centroblast-like constitution. PB-DLBCL had 

significantly more frequent mutations in four GCB-associated genes, i.e. B2M, EZH2, IRF8, and 

TNFRSF14, compared to NO-DLBCL-GCB (P=0.031, P=0.010, P=0.047, and P=0.003). PB-DLBCL with its 

corresponding specific mutational profile were significantly associated with a superior overall 

survival compared to equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P=0.011). This study is 

the first to demonstrate that PB-DLBCL is characterized by a GCB-phenotype, with a centrocyte-like 

GEP-pattern and a GCB-associated mutational profile (both involved in immune surveillance) and a 

favorable prognosis. These novel biology-associated features provide evidence that PB-DLBCL 

represents a distinct extranodal DLBCL entity and its specific mutational landscape holds potential 

for targeted therapies (e.g. EZH2-inhibitors).  
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Introduction 

The World Health Organization (WHO) Classification of Soft Tissue and Bone recognizes primary 

bone lymphoma as a specific lymphoma entity, which is primarily represented by diffuse large B-cell 

lymphoma (DLBCL).1 Primary bone DLBCL (PB-DLBCL) is a rare DLBCL-subtype, with a relative young 

median age at diagnosis (55 years)2, and a favorable 5-year overall survival (mean OS: 82%).2-9 Most 

patients present with symptoms of pain, bone fractures, localized swelling, or suspected 

periprosthetic joint infection.10-13 Patients’ physical performance can be affected as weight-bearing 

bones are commonly involved (f.e. femur, spine, and pelvis).2,6,13 

Between studies, reported clinical characteristics and survival rates are diverse due to a lack of strict 

(anatomical) definitions and consequent proper classification of DLBCL with osseous involvement (O-

DLBCL). As such, WHO-classification1 and Messina et al.,2 distinguish three different sub-entities: PB-

DLBCL with a single bone lesion with or without regional involvement of lymph nodes, polyostotic-

DLBCL with multifocal disease in a single bone or multiple affected bones only, and disseminated-

DLBCL with ≥1 bone lesion(s) and ≥1 (extra)nodal localization(s). These O-DLBCL sub-entities 

illustrate patients’ outcomes with a superior survival for PB-DLBCL and polyostotic-DLBCL compared 

to disseminated-DLBCL.2  

Only a few small retrospective cohort studies have investigated the clinicopathologic characteristics 

of O-DLBCL. Examining cell-of-origin (COO) with immunohistochemistry (IHC) by Hans’ algorithm14, 

these studies identified a predominantly germinal center B-cell (GCB)-phenotype in ~60% of O-DLBCL 

(n=269 cases, pooled data from 10 studies).5,13,15-22 Based on gene-expression-profiling (GEP), this 

was confirmed by Li et al.,8 demonstrating a GCB-phenotype in 90% (n=155). Nonetheless, a 

comprehensive molecular characterization of O-DLBCL is currently missing.  

To our knowledge, only two studies report genetic data explicitly collected from O-DLBCL. First, lack 

of MYD88 L265P hotspot mutation was observed in O-DLBCLs (n=15).20 Second, applying a limited 

targeted next-generation sequencing (t)(NGS) panel, activating mutations in NOTCH1 and KRAS were 

identified in PB-DLBCL (n=1).23 Due to limited number of studies, relatively small patient cohorts, and 

absence of comprehensive genetic analyses, there is a lack of knowledge regarding the genetic 

constitution of O-DLBCL. This is caused by the rarity of the disease, the difficulty in obtaining 

sufficient diagnostic tissue and the inability to attain proper molecular analysis of bone biopsies, as 

decalcification procedures leads to acquisition of DNA artifacts and complicates interpretation of 

sequencing results. Consequently, it is unclear whether the different O-DLBCL sub-entities reflect a 

separate molecular entity or rather a heterogeneous disease, as commonly assumed for DLBCL-

NOS.24-28 
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Since the introduction of (targeted)NGS, evidence of genetic heterogeneity associated with 

histopathological and clinical features and anatomical localization of DLBCL-NOS has increased. 

Therefore, the revised (2016) WHO Classification of Tumours of Haematopoietic and Lymphoid 

Tissues29 recognizes extranodal DLBCL with specific anatomy as separate entities, such as 

intravascular large B-cell lymphoma (IVLBCL), primary cutaneous DLBCL, leg type (PC-DLBCL-LT), and 

primary DLBCL of the central nervous system (PCNSL), commonly representing an activated B-cell 

(ABC)-phenotype.30-36 Following this paradigm and due to their specific disease presentation and 

clinical behavior, we hypothesized that PB-DLBCL contains unique molecular characteristics. To 

address this, our study presents the first comprehensive GEP and targeted deep-sequencing analyses 

in a well-annotated and relatively large cohort of PB-DLBCL. 

Methods  

Patient characteristics 
This retrospective study investigated 103 O-DLBCLs of which sufficient tumor DNA was available  and 

were not included in our previous studies.12,19,37-41 Patients were selected through a search of 

pathology surveys that reported osseous involvement and diagnosed between 2002 and 2020 at the 

Leiden University Medical Center (LUMC; n=48), Amsterdam University Medical Center, location 

AMC (n=11), Erasmus MC Cancer Institute (n=7), or affiliated non-academic hospitals (n=37). As an 

expert-center for tumors of soft tissue and bone, the LUMC contribution was enriched for O-DLBCLs. 

Figure-1A presents an overview of included cases. 

Formalin-fixed and paraffin-embedded or fresh frozen tissue samples were obtained during 

diagnostic procedures (Supplemental Table-1). Based on different local standard procedures at time 

of initial diagnosis, staging was performed with either MRI-, CT- or PET(/CT)-scan (Supplemental 

Table-1) and reviewed by a radiologist expert (R.R.) to stratify cases according to WHO-definitions.1,2 

As comparator, we included 63 patients diagnosed between 2006-2020 with non-osseous DLBCL as 

considered by radiological assessments and a GCB-phenotype (NO-DLBCL-GCB) based on Hans’ 

algorithm (Figure-1A). T-cell/histiocyte-rich DLBCL and Burkitt lymphoma were not included. All 

cases were classified according to Ann Arbor and the International Prognostic Index. The study was 

performed in accordance with the Dutch Code for Proper Secondary Use of Human Tissue, the local 

institutional board requirements and the revised Declaration of Helsinki (2008) and was approved 

with a waiver of consent by the LUMC’s medical ethics committee (B16.048).  

Immunohistochemistry and fluorescence in situ hybridization (FISH) 
Following the latest WHO classification of lymphoid neoplasms29, IHC and FISH analyses were 

performed (elaborated in Supplemental Methods). Briefly, IHC was determined with CD10, BCL6, 

and MUM1 antibodies for COO classification according to Hans’ algorithm.14 For O-DLBCLs, MYC, 

BCL2, and BCL6 rearrangements were analyzed by FISH, using break-apart probes, as outlined 

before.42 NO-DLBCL-GCBs were screened for MYC rearrangements and if present, BCL2 and BCL6 

rearrangements were assessed. EBV status was determined by EBV encoded RNA in situ 

hybridization.  
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Gene-expression-profiling 
GEP was performed with a NanoString system and an extended custom-made probe set, covering 20 

genes of the Lymph2Cx-assay for COO classification and additionally 219 genes related to DLBCL 

(Supplemental Methods).43-47 For COO classification, raw counts obtained by NanoString gene-

expression analysis were uploaded at the Lymphoma/Leukaemia Molecular Profiling Project website 

for COO categorization (https://llmpp.nih.gov/LSO/LYMPHCX/lymphcx_predict.cgi).48 Technical 

variation of NanoString nCounter results of each sample was removed using standardization based 

on the geometric mean of inherent positive controls in the assay. Next, a principal component 

analysis was performed as a quality control for identification of possible outliers and potential ‘batch 

effects’ introduced by NanoString cartridges (Supplemental Figure-1). Gene-expression data was 

normalized by using five Lymph2Cx housekeeping genes and the resulting data were analyzed with 

RStudio (R-3.6.3, including packages NanoStringNorm-1.2.1, glmnet-3.0-2, factoextra-1.0.6, 

ComplexHeatmap-2.2.0, dendextend-1.13.4, ggpubr-0.4.0, and scales-1.1.1). All 234 genes (excluding 

housekeeping genes) were used to identify GEP clusters within O-DLBCLs and NO-DLBCL-GCB. In 

total, BAGS(2CLINICS)-assays consist of 208 genes, overlapping 26 genes of our custom NanoString 

panel. Thirteen genes of BAGS(2CLINIC)-assays, most distinctive between centroblast and centrocyte 

B-cells, were included for further analysis. Additionally, another study recently reported a dark 

zone/light zone (DZ/LZ)-spatial signature consisting of 53 genes, overlapping eleven genes with our 

panel. Both limited-(BAGS(2CLINIC) and DZ/LZ-spatial signature)-assays -with only MYC overlapping- 

were separately employed to relatively assign centroblast-like or centrocyte-like phenotypes 

(Supplemental Figure-3).49-51 The gene-expression profiling reported in this article have been 

deposited in the Gene Expression Omnibus database (accession number GSE176126) and can also be 

found in supplementary table 4. 
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Targeted next-generation deep-sequencing 
After microdissection from deparaffinised 10μm sections (median tumor cells: 70%, range 20-90, 

Supplemental Table-1), total nucleic acid was isolated with the fully automated Tissue Preparation 

System (Siemens Healthcare Diagnostics), as described previously.52 For fresh frozen biopsies, DNA 

was isolated from 25μm cryosections, with the QIAamp DNA Mini Kit (Qiagen). The in-house 

designed and validated LYMFv1 NGS panel is an Ion-Torrent based Ampliseq panel (ThermoFisher 

Scientific, Bleijswijk, Netherlands, elaborated in Supplemental Methods). The LYMFv1 panel contains 

1362 amplicons, subdivided into two primer-pools and covers 52 B-cell lymphoma-relevant genes 

(Supplemental Table-2). Briefly, this panel was compiled from a comprehensive review of ~300 

articles (until 2018) on frequencies and clinical relevance of aberrations in B-cell lymphomas. The 

LYMFv1 panel has an overlap of 73% (33 genes) with a proposed consensus tNGS panel for all 

mature lymphoid malignancies.53 LYMFv1 libraries were either prepared with an Ion Chef System 

(ThermoFisher Scientific) or manually. The resulting libraries were sequenced on an Ion Torrent S5-

system (ThermoFisher Scientific). Sequence reads were aligned to the human reference genome 

(GRCh37/hg19) using TMAP 5.07 software, with default parameters 

(https://github.com/iontorrent/TS).54 Variants were called by Torrent Variant Caller. The average 

read count was 3015 (Range, 253-13988). Supplemental Table-1 lists average read counts per 

patient. Minimum thresholds for calling variants were ≥100 on-target reads and 10% variant allele 

frequency. Samples were excluded if deep-sequencing data provided an insufficient number of reads 

or the transition to transversion ratio was ≥5, indicating excess formalin fixation artefacts. All 

variants were annotated in the Geneticist Assistant NGS interpretive Workbench (SoftGenetics), into 

class 1-benign, class 2-likely benign, class 3-unknown significance, class 4-likely pathogenic or class 5-

pathogenic.55 Class 4 and 5 variants were designated as pathogenic mutations. Additionally, class 3 

variants of unknown pathogenicity were interpreted as pathogenic mutations, in case of a high 

CADD-phred score (>25) and/or a pathogenic prediction from ≥2 of four selected prediction scores 

(Sift, Polyphen, LRT, and MutationTaster). Sequencing data obtained for O-DLBCL and NO-DLBCL-

GCB subgroups were mutually compared. Additionally, a literature based-cohort of DLBCL-GCB was 

gathered from four large sequencing studies.24-27 Corresponding Supplemental Tables (or a figure24) 

reporting COO subtypes and potential pathogenic variants were used to identify mutational 

frequencies in DLBCL-GCB cases, collecting in total 651 DLBCL-GCB cases.  
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Statistical analysis 
Statistical analyses were performed using RStudio (R-3.6.3, packages: clustertend-1.4, cmprsk-2.2-

10, ComplexHeatmap-2.2.0, dendextend-1.13.4, dynpred-0.1.2, factoextra-1.0.6, ggpubr-0.4.0, 

glmnet-3.0-2, NanoStringNorm-1.2.1, prodlim-2019.11.13, scales-1.1.1, and survival-3.1.11). 

Hierarchical clustering analysis on GEP-data was performed using Euclidean distance metric and 

Ward’s minimum variance method for cluster formation. A penalized logistic regression model was 

applied to identify genes most differentially expressed between PB-DLBCL and NO-DLBCL-GCB.56 This 

model was based on elastic-net regression for which a mixing parameter alpha of 0.10 was used. 

ANOVA was applied on gene-expression data of a selected set of 13 genes of the BAGS(2CLINIC)-

assay and 11 genes of the DZ/LZ spatial signature. Fisher’s exact or Students’ t-test was applied for 

analyzing categorical or continuous variables among O-DLBCL subgroups and NO-DLBCL-GCB. 

Progression free survival (PFS) or OS were defined as date from initial diagnosis to date of 

progression and/or death by any cause. Patients were administratively censored after three years of 

follow-up or censored at last follow-up when there was no event. Kaplan-Meier method was used to 

determine median follow-up time and to construct survival curves and were compared with a Log-

rank test. In case of a statistically significant p-value (<0.05), corresponding hazard ratio (HR) and 

95% confidence intervals (CI) were calculated with a Cox proportional hazard model.  

Results  

Patient characteristics 
O-DLBCLs were categorized into PB-DLBCL (n=41), polyostotic-DLBCL (n=14), and disseminated-

DLBCL (n=48, Figure-1A/B).17 Table-1 summarizes clinical characteristics of both O-DLBCL and NO-

DLBCL-GCB sub-entities. Individual radiologic assessments and age-related bone localizations are 

described in Supplemental Results. Figure-1C/D displays exact anatomical (non)osseous localizations. 

Consistent with previous studies, the mean age at diagnosis for PB-DLBCL and polyostotic-DLBCL was 

(borderline) significantly lower (53 and 50 years) compared to disseminated-DLBCL (62 years; 

P=0.020 and P=0.068) and NO-DLBCL-GCB (64 years; P=0.003 and P=0.033).2,6,7 Additionally, NO-

DLBCL-GCBs were subdivided into only nodal (n=19), mixed (nodal and extranodal involvement, 

n=28), or solitary extranodal localization (n=16). Six extranodal NO-DLBCL-GCBs were diagnosed with 

PCNSL, considered as poor-risk advanced disease (Ann Arbor Stage-IV) and treated with high-dose 

methotrexate containing regimens. Most patients (n=150, 90%) were treated with curative intent by 

(R-)CHOP-based (immune-)polychemotherapy. Five patients died before treatment and for 

palliation, four patients received local radiotherapy only, or rituximab monotherapy. Median follow-

up times for O-DLBCLs and NO-DLBCL-GCBs were respectively 40 and 20 months. 

Pathological features 
Figure-2 displays morphological examples and immunohistochemical characteristics of O-DLBCL. 

According to Hans classification, a GCB-phenotype was identified in 74% of O-DLBCL (70 out of 94 

patients, Supplemental Table-3). Using NanoString/Lymph2Cx a GCB-phenotype was found in 88% of 

O-DLBCL (35/40 patients), an ‘intermediate/unclassifiable’-phenotype in 10% (n=4), and an ABC-

phenotype in 2% (n=1). Additionally, NanoString/Lymph2Cx showed a GCB-phenotype in 90% of NO-

DLBCL-GCB (18/20 patients), one ABC-phenotype and one intermediate/unclassifiable-phenotype. 

Overall, the COO concordance between cases with both IHC and NanoString was 83% (50/60 cases).  
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Fluorescence in situ hybridization 
The majority of O-DLBCL (83/103 cases) were screened for MYC/BCL2/BCL6 rearrangements and 

EBV-status (Figure-3A). Due to technical failures, most likely caused by decalcification of bone 

material, analysis of all three rearrangements failed in 40% (33/82 cases). Therefore, only a 

descriptive analysis was performed. Approximately similar frequencies of rearrangements were 

identified in polyostotic-DLBCL, disseminated-DLBCL and NO-DLBCL-GCB, largely consistent with 

occurrences in DLBCL-GCBs in literature.24,27,28,57 Compared to NO-DLBCL-GCB, MYC-/BCL2-

rearrangements were observed at relatively low frequencies, while BCL6-rearrangements were more 

common (4%, 8%, and 31%, respectively) in PB-DLBCL, indicating that only BCL6 rearrangements 

appear to be relevant for PB-DLBCL lymphomagenesis. A ‘double/triple’-hit make-up characteristic 

for high-grade B-cell lymphoma (HGBCL) was observed in ten NO-DLBCL-GCB, and three 

disseminated-DLBCL, but not in PB-DLBCLs/polyostotic-DLBCLs. IHC MYC and BCL2 status for 

evaluating double expressers are described in Supplemental Results. No O-DLBCL (n=61) and only 

three NO-DLBCL-GCB were EBV-positive. Lack of EBV in these overall GCB-subtype DLBCLs is 

consistent with previous studies describing occurrence of EBV-positive DLBCLs mainly (in elderly) 

with an ABC-phenotype.58 

Gene-expression-profiling 
As the NanoString material was limited, GEP was performed on 63 randomly selected cases, of which 

~20 ng/μl of RNA was available (Figure-1A; Supplemental Table-5). After excluding three failed 

measurements and two outliers (Supplemental Figure-1), clustering of GEP-data was performed on 

58 cases, representing 23 PB-DLBCL, 5 polyostotic-DLBCL, 11 disseminated-DLBCL, and 19 NO-DLBCL-

GCB. Using both FF and FFPE tissues for GEP analysis did not impact the identified difference 

between O-DLBCL and NO-DLBCL-GCB (Supplemental Figure-1E/4). This is consistent with previous 

studies showing a high correlation between GEP-data obtained from FF and FFPE tissues.59-61 

Unsupervised hierarchical clustering with GEP-data of an extended Lymph2Cx (234 genes) provided 

four different clusters (Cluster A-D; Supplemental Figure-2). The most significant difference was 

found between cluster A, allocating eight PB-DLBCL and one NO-DLBCL-GCB, and cluster B, with 

three PB-DLBCL and 12 NO-DLBCL-GCB (P<0.001). Cluster C was a mixture of O-DLBCL sub-entities 

and cluster D an agglomeration of O-DLBCL subtypes and NO-DLBCL-GCBs. Disseminated-DLBCL was 

observed across all four clusters, indicating its heterogeneity and wide variety in disease origins of 

individual cases.  

To further discriminate GEP differences between PB-DLBCL and NO-DLBCL-GCB, a penalized logistic 

regression model was performed, assigning a significant set of 34 genes differentially expressed 

between PB-DLBCL and NO-DLBCL-GCB. Unsupervised clustering of these differential-expressed 

genes generated three clusters: (A) predominantly PB-DLBCLs, (B) an agglomeration of O-DLBCL 

subtypes and NO-DLBCL-GCB, and (C) mainly NO-DLBCL-GCBs (Figure-4). In contrast to NO-DLBCL-

GCB, PB-DLBCL showed significantly increased expression (P<0.001) of immune response genes 

(CTLA4 and CXCL12) and HLA-A, HLA-C, HLA-E, and HLA-F. Elevated expression levels of ARID1A and 

SMARCA4 (both involved in chromosome organization) and FOXO1 (a centroblast hallmark) were 

found in NO-DLBCL-GCB as compared to PB-DLBCL.62-65  
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Subsequently, to relatively distinguish between a centroblast-like or centrocyte-like phenotype of 

PB-DLBCL and NO-DLBCL-GCB cases, both limited BAGS(2CLINIC)-GEP-  and DZ/LZ-spatial signature 

assays were assessed.49-51 Expression levels of eight genes (62%) were significantly different between 

PB-DLBCL and NO-DLBCL-GCB (Supplemental Figure-3, P≤0.047). PB-DLBCL showed significantly 

higher expression of BCL2A1 and IL6R (centrocyte-related), while NO-DLBCL-GCB showed 

significantly increased expression for BCL6, MME, MYBL1, FOXO1, SMARCA4 and TCL1A (centroblast-

related). Applying a limited-DZ/LZ spatial signature, nine genes showed significantly higher 

expression (CD3E, CD4, CD8A, CTLA4, FAS, HLA-E, ITGB2, LAG3, and STAT1 for PB-DLBCL as compared 

to NO-DLBCL-GCB (Supplemental Figure-3C/D, P≤0.031), designating a centrocyte-like phenotype for 

PB-DLBCL. Despite these limited-BAGS(2CLINIC) and limited-DZ/LZ-spatial signature-analyses, both 

independently identified GEP differences indicated a possible centrocyte-like phenotype for PB-

DLBCL and a conceivable centroblast-like constitution for NO-DLBCL-GCB, corroborating previous 

results by Li, et al.8  

Targeted next-generation deep-sequencing  
In total, 83 O-DLBCLs and 63 NO-DLBCL-GCB were successfully deep-sequenced. For 20 O-DLBCLs 

obtained NGS data were of insufficient quality due to DNA artifacts (Figure-1A). Pathogenic variants 

were identified in 49 genes (Figure-3A and Supplemental Table-5), with a median of four mutated 

genes per individual (range 0-12). Four known ‘hotspot’ mutations were elucidated, loss-of-function 

B2M p.M1* and CD79B, p.Y196*, and gain-of-function EZH2 p.Y646* and MYD88 p.L265P. In 

contrast to a prior study, our data revealed low frequencies of MYD88 p.L265P mutation in O-

DLBCLs.20 Based on strict ‘anatomical’ WHO-definitions, the two most biologically different DLBCL 

sub-entities (i.e. PB-DLBCL and NO-GCB-DLBCL) were compared to explore potential differences. The 

mutational profile of PB-DLBCL included frequent mutations (≥25%) in B2M, EZH2Y646*, IRF8, and 

TNFRSF14 (loss-of-function) and differed significantly from NO-DLBCL-GCB, relatively lacking these 

mutations (P=0.031, P=0.010, P=0.047, and P=0.003, respectively; Figure-3C).  

In contrast to PB-DLBCL, high occurrences (≥25%) of KMT2D and TP53 aberrations were observed 

within NO-DLBCL-GCB (P=0.347 and P=0.325). Besides frequent mutations in CREBBP, KMT2D, 

MYD88, and TNFRSF14, CARD11 was the most commonly mutated gene (36%) in polyostotic-DLBCL 

was (borderline) significantly higher compared to PB-DLBCL (P=0.085), disseminated-DLBCL 

(P=0.036), or NO-DLBCL-GCB (P=0.014), suggesting a biologically distinct subgroup. With frequent 

mutations in TNFRSF14, KMT2D, or TP53 disseminated-DLBCL revealed similarities with molecular 

constitutions of both PB-DLBCL and NO-DLBCL-GCB. Additionally, focusing on 19 disseminated-DLBCL 

cases with bulky osseous disease (Figure-3), comparable mutational profiles as PB-DLBCL were 

identified with high frequencies of mutations in B2M (16%), EZH2 (26%)), IRF8 (21%), and TNFRSF14 

(42%), suggesting that this lymphoma originated in bone. 
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Survival analyses 

Consistent with the prognostic importance of IELSG-staging2, PB-DLBCL and polyostotic-DLBCL 

demonstrated superior PFS/OS (P=0.018/P=0.039; Figure-5A/B), compared to disseminated-DLBCL, 

with 3-year OS-rates of 91% (95%-CI: 0.82-1.00), 100% (95%-CI: 1.00-1.00), and 76% (95%-CI: 0.63-

0.90), respectively. No significant difference in PFS/OS was observed for extranodal, nodal, and 

mixed NO-DLBCL-GCB sub-entities (Figure-5C/D). PB-DLBCL demonstrated a significantly superior 

PFS/OS compared to equivalent Ann Arbor stage I/II NO-DLBCL-GCBs (P=0.003/P=0.011; Figure-

5E/F). Between PB-DLBCL and NO-DLBCL-GCB, the mutational landscape differed significantly 

(P=0.002), as the majority of PB-DLBCLs (24/34) harbored ≥1 mutation in B2M, EZH2, IRF8, and 

TNFRSF14, compared to a minority of Stage I/II NO-DLBCL-GCB (7/25) with ≥1 these specific 

mutations. No difference was observed in the occurrence of mutations in KMT2D or TP53 between 

PB-DLBCL (12/34) and NO-DLBCL-GCB (12/25, P=0.423). With respect to Ann Arbor Stage III/IV, 

disseminated-DLBCL and NO-DLBCL-GCB showed similar survival outcomes, although polyostotic-

DLBCL demonstrated an improved PFS/OS (Figure-5G/H). Besides a prognostic impact for Ann Arbor, 

IPI and age, further univariate survival analyses demonstrated no remarkable survival differences for 

patients’ characteristics, COO, rearrangements, or individual pathogenic variants, presumably due to 

low patient numbers and relatively low number of events (Supplemental Table-6).  

 

Discussion  
To our knowledge, this study is the first to provide a comprehensive and integrative evaluation of 

IHC, GEP, and targeted deep-sequencing in a clinically well-annotated and relatively large cohort of 

O-DLBCL patients. As previously described8, IHC/NanoString confirmed a predominant GCB-

phenotype in O-DLBCLs, across all sub-entities. Extended-Lymph2Cx-GEP analysis revealed 

significantly different clusters for PB-DLBCL specifically targeting immune surveillance genes, in 

contrast to NO-DLBCL-GCB with a focus on chromosome organization and reduction of p53 activity. 

Limited-BAGS(2CLINIC)- and DZ/LZ-spatial signature-analysis indicated a centrocyte-like phenotype 

for PB-DLBCL with a preferential origin in the early light zone of B-cell development, as opposed to a 

centroblast-like constitution (dark zone) for NO-DLBCL-GCB. Intriguingly, the predominant GCB-

centrocyte-like phenotype in PB-DLBCL was supported by frequent mutations in GCB-associated 

genes (i.e. B2M, EZH2, IRF8, and TNFRSF14). Additionally, although a favorable survival in general for 

DLBCL-GCB, PB-DLBCL with its corresponding specific mutational profile was significantly associated 

with a superior OS compared to equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB. Based on our 

data, we propose a model in which PB-DLBCL can be recognized as a distinct extranodal DLBCL, with 

a centrocyte-like GCB-phenotype, overexpression of immune response genes and a unique GCB-

associated molecular constitution, thereby reflecting favorable prognosis (Figure-6).  
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Controversial O-DLBCL definitions complicate a meaningful comparison between individual studies, 

including small numbers of O-DLBCLs (n=4-63) and varying frequencies (25-86%) of IHC-based GCB-

phenotypes.5,13,15-21,66 Using Affymetrix GeneChip/BAGS2CLINIC-assay, Li et al.8 demonstrated a GCB-

phenotype in 90% of O-DLBCLs (n=155) and a centrocyte-like phenotype in a small subgroup (n=11).8 

Likewise, our extended-NanoString/Lymph2Cx-GEP showed significantly different GEP-clusters for 

PB-DLBCL and NO-DLBCL-GCB. Additionally, limited-BAGS(2CLINIC)- and DZ/LZ-spatial signature-

analysis indicated a centrocyte-like phenotype for PB-DLBCL and a centroblast-like constitution for 

NO-DLBCL-GCB.49-51 In PB-DLBCL, Li et al. demonstrated upregulation of major histocompatibility 

complex class I, extracellular matrix and adhesion, and tumor suppressor genes and downregulation 

of pro-oncogenes, compared to NO-DLBCL-GCB.8 Furthermore, high expression of genes involved in 

the immune response  (CTLA4 and CXCL12) were identified in PB-DLBCL, and together with frequent 

mutations in B2M and TNFRSF14, they are important for immune surveillance. This suggests that 

evasion from immune surveillance is crucial for PB-DLBCL to survive in their osseous 

environment.62,63,65,67-69 In contrast, NO-DLBCL-GCB showed higher expression of ARID1A and 

SMARCA4 (chromosome organization through SWI/SNF complex), and both target TP53 (DNA 

damage response) and CDKN1A (cell cycle inhibitor).64,65,69 The frequent mutations in genes involved 

in epigenetics (CREBBP and MEF2B) and TP53 mutations indicate that, unlike immune evasion in PB-

DLBCL, survival of NO-DLBCL-GCB is critically dependent on deregulation of chromosome 

organization and reduction of p53 activity.65,69 Increased expression of BCL2A1 and IL6R indicated a 

centrocyte-like phenotype for PB-DLBCL. Upregulation of BCL6, MME, MYBL1, SMARCA4 and TCL1A 

suggested a centroblast-like constitution for NO-DLBCL-GCB. Lastly, high expression of FOXO1, a 

centroblast hallmark and imperative for sustaining the germinal center (GC) dark zone65,69, was 

specifically found in NO-DLBCL-GCB, thereby supporting a centroblast-like phenotype for NO-DLBCL-

GCB, as opposed to low/average FOXO1 expression in PB-DLBCL.   
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Comprehensive reviews by Pasqualucci and Mlynarczyk et al. independently provide an integral 

insight into the development of GC-derived B-cell lymphomas.65,69 Following these established 

pathogenic principles, the frequently mutated GCB-associated genes, B2M, EZH2, IRF8, and 

TNFRSF14 (≥1 present in 68% of PB-DLBCLs), are likely to play a crucial role in GC B-cell 

lymphomagenesis, as elucidated by our data. Frequent occurrence of mutations in chromatin 

modifiers (EZH2 and TNFRSF14) were observed, and although similarities with follicular lymphoma, 

other genetic abnormalities such as BCL2 translocations were less common in PB-DLBCL (2/25). 

Approximately a quarter of PB-DLBCL pertained a gain-of-function EZH2 hotspot mutation (Y646*), 

that abrogates the terminal B-cell differentiation and cell cycle control.70  EZH2 acts as an important 

GC regulator like BCL6, through silencing of genes by tri-methylation of lysine-27 of histone-3 within 

the PRC2 complex. As such, EZH2 Y646* hyper-represses CKDN1A and IRF4, increasing proliferation 

and preventing differentiation towards an activated B-cell.65 Consequently, compared to EZH2-

wildtype, EZH2-mutated DLBCL appears to be susceptible to tazemetostat (EZH2-inhibitor).69,71 

Moreover, B2M loss-of-function, EZH2 gain-of-function aberrations and downregulation of MHC 

class I/II, will lead to a successful evasion of immune surveillance mechanisms.65,69,72,73 TNFRSF14 

loss-of-function mutations are associated with B- and T-Lymphocyte Attenuator downregulation, 

thereby initiating a B-cell autonomous activation and lymphoma-supportive 

microenvironment.69,74,75 Finally, IRF8 is a member of the interferon family of transcription factors, 

regulating immune response through BCL6 activation. However, an IRF8-driven phenotype alone is 

insufficient for lymphomagenesis as a second genetic hit is required.76,77 This is consistent with our 

findings indicating that 57% (12/21) of mutated IRF8 cases were accompanied by ≥1 B2M, EZH2 

and/or TNFRSF14 abnormalities.   

Four NGS studies investigated the mutational landscape of large DLBCL cohorts and also reported on 

COO (Affymetrix, IHC, and/or NanoString), allowing direct comparison of mutation frequencies in 

COO-stratified subgroups with our results in O-DLBCL.24-27 These studies included 96, 60, 331, and 

164 DLBCL-GCB cases, respectively. This pooled literature-based DLBCL-GCB cohort (n=651) yields 

mutation frequencies for B2M, EZH2, IRF8, KMT2D, TNFRSF14, and TP53 of respectively 15%, 16%, 

14%, 32%, 21%, and 15% (Figure-3C). Except for EZH2 and TNFRSF14 (P=0.148 and P=0.136), the 

occurrence of mutations in B2Mand IRF8, in our cohort of PB-DLBCL were significantly higher as 

compared to the literature-based DLBCL-GCB cohort (P=0.012, and P=0.020, respectively). As 

essential data regarding exact anatomical localizations (ignorant for osseous involvement) was 

lacking for these studies, and control for confounding factors was not possible, it could be assumed 

that a proportion of DLBCL-GCBs were PB-DLBCLs. Excluding these cases from this literature-based 

cohort might increase the significance level of this comparison. Although an independent validation 

study remains indispensable, this external literature-based reflection strengthens our findings by 

emphasizing that PB-DLBCL could be recognized as a distinct molecular entity characterized by 

frequent mutations in B2M, EZH2, IRF8, and TNFRSF14, as compared to NO-DLBCL-GCB.  
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Clustering analyses in mentioned NGS studies have independently designated different (and partially 

overlapping) molecular DLBCL subtypes related to COO, prognosis, and potential therapeutic targets. 

In our study, the limited tNGS panel used for sequencing and lack of chromosomal aberrations 

impaired proper molecular classification of O-DLBCL subtypes. As such, Supplemental Table-7 

summarizes only a derivative of these clusters related to identified molecular profiles in O-DLBCL 

sub-entities. Considering frequent mutations in B2M, EZH2, IRF8, and TNFRSF14, PB-DLBCL could 

primarily be categorized in ‘good-risk’ clusters (e.g. C1, C3, EZB, BN2, and BCL2), which corroborates 

our results for PB-DLBCL associated with favorable survival. This contrasts with other WHO-

recognized extranodal DLBCLs, such as PCNSL, PCDLBCL-LT, and IVLBCL, which are primarily 

characterized by ABC-phenotypes and inferior survival. Our findings in PB-DLBCL coincides with 

compelling evidence, illustrating superior OS for DLBCL-GCB compared to DLBCL-ABC.2,30-36 

The characterized genetic background of PB-DLBCL does not answer the question whether a 

lymphoma originates in the bone, since it is assumed that a GC does not exist in bones, or that 

circulating lymphoma cells are attracted by locally secreted chemokines. The contrast in mutational 

profiles between PB-DLBCL and NO-DLBCL-GCB (and even more with opposite extranodal DLBCL-

ABCs) requires additional investigation into the coherence of these genetic factors and the resulting 

specific interactions with its microenvironment. Remarkably, no specific (extranodal) DLBCL-GCB 

entity has yet been recognized in the WHO Classification of Tumours of Haematopoietic and 

Lymphoid Tissues and therefore this study can be used as a reference study for DLBCL-GCB. As 

stated before78, our findings (re)affirm the supplementary merit of examining well-annotated 

homogeneous cohorts and invoke the need of additional in-dept evaluation of (extra)nodal DLBCLs.  

This study was limited by a percentage of GEP (7%, n=3) and tNGS dropouts (19%, n=20) of the O-

DLBCL cohort, illustrating difficulties in molecular analysis on decalcified bone tissue, with no 

indication that this dropout is selective for certain outcomes. By using IHC as primary COO classifier, 

several non-GCB IHC cases that harbor a late GCB phenotype are absent from our comparator NO-

DLBCL-GCB cohort. Given the low percentage (9%) of dissimilar COO classification by IHC and 

NanoString in the original study48, we anticipate that this may have possibly biased our results, but 

to a limited extent. Moreover, this investigation would have benefited from more extensive GEP 

measurements (e.g. complete BAGS2CLINIC-assay or DZ/LZ-spatial signature-assay) for refinement of 

COO clustering and comprehensive sequencing data (e.g. whole-exome-sequencing) to elucidate 

complete molecular profiles including copy number alterations or larger structural variations. 

Nevertheless, these techniques would also have been impeded by our perceived (partially) 

suboptimal DNA/RNA qualities. Furthermore, GEP analyses focused on the comparison of PB-DLBCL 

with NO-DLBCL-GCB and therefore the numbers of polyostotic-DLBCL and disseminated-DLBCL 

analyzed were underrepresented and requires additional research. A sensitivity analysis 

demonstrated that the inclusion of a relatively small number of HGBCLs did not significantly bias our 

results (Supplemental Results). Multivariate analyses showed that the heterogeneity in age, 

chemotherapy, or adjuvant radiotherapy did not confound our survival outcomes (Supplemental 

Results). 
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In conclusion, this study is the first to demonstrate that PB-DLBCL is characterized by a centrocyte-

like GCB-phenotype, with a specific GEP-pattern and GCB-associated mutational profile (mainly B2M, 

EZH2, IRF8, and TNFRSF14 mutations), both involved in immune surveillance, and associated with 

favorable survival. Consequently, these new biological findings provide evidence that PB-DLBCL can 

be recognized as a distinct extranodal DLBCL entity and holds potential for development of targeted 

therapies (e.g. EZH2-inhibitors or other epigenetic-modulating agents69) to ultimately improve 

patients’ survival.  
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Figure-1 – Overview of included O-DLBCL and NO-DLBCL cohorts and sub-entities with specific 

anatomical localizations. 

A) Flow-chart of included and analyzed O-DLBCL and NO-DLBCL sub-entities. 103 DLBCL cases with 

osseous involvement were subdivided into three O-DLBCL stages with primary bone (PB-)DLBCL 

(n=41), polyostotic-DLBCL (n=14), and disseminated-DLBCL (n=48). Of these, 20 cases failed tNGS 

quality controls (insufficient DNA or high number of deamination variants), whilst 83 cases attained 

appropriate sequencing results. In addition, 63 NO-DLBCL-GCB cases were included as comparator. 

Furthermore, 63 samples with adequate RNA were send for NanoString analysis, of which 3 failed 

analysis. In total 24 PB-DLBCL, 5 polyostotic-DLBCL, 11 disseminated-DLBCL, and 20 NO-DLBCL-GCB 

were successfully analyzed with the NanoString platform.  

B) Radiological imaging of IELSG-staging system with three anatomically-defined stages: PB-DLBCL 

with a single bone lesion with or without regional involvement of lymph nodes, polyostotic 

lymphoma (polyostotic-DLBCL) with multifocal disease in a single bone or multiple affected bones, 

and disseminated lymphoma (disseminated-DLBCL) with ≥1 bone lesion(s) and ≥1 (extra)nodal 

localization(s).2 NO-GCB-DLBCL was defined as nodal, mixed (nodal and extranodal involvement), or 

only extranodal localization(s), without any osseous involvement.  

C) Frequencies of anatomical osseous localizations identified in all 103 O-DLBCL sub-entities. Other 

osseous localizations consisted of one calcaneus, cuneiform, metacarpal III, or talus.  

D) Frequencies of anatomical non-osseous localizations of 63 NO-DLBCL-GCB.  

 

Figure-2 - Morphological and immunohistochemical features of O-DLBCLs. 

A) Infiltration of pleomorphic B-cells with entrapment of pre-existing bone (black arrowhead) in an 

example of PB-DLBCL.  

B) Pleomorphic B cells in case of PB-DLBCL with large and irregular nuclei with a cleaved, 

multilobulated appearance and small nucleoli.  

C) Pleomorphic B cells in case of disseminated-DLBCL with large nuclei and prominent large nucleoli 

with an immunoblastic/plasmablastic appearance.  

D) Diffuse staining of CD20 in PB-DLBCL.  

E) Diffuse staining of CD10 in an example of PB-DLBCL with a GCB phenotype, according to Hans’ 

algorithm.  

F) Strong diffuse staining of MUM1 in an example of disseminated-DLBCL with an ABC phenotype. 
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Figure-3 - Significant differences in genetic landscapes between PB-DLBCL and NO-DLBCL-GCB. 

A) Oncoprintplot of the genetic aberrations and COO of O-DLBCL and (B) NO-DLBCL-GCB sub-entities. 

COO-phenotype is indicated by blue for ABC, orange for GCB, brown for intermediate (Only 

NanoString), and grey for cases with unknown COO-phenotype. Furthermore, a positive ISH (FISH or 

EBER) and a mutation in one of the genes are marked with green. Hotspot mutations are indicated 

with dark red (B2MM1*, CD79BY196*, EZH2Y646*, MYD88L265P).  

C) Comparison of identified genetic aberrations with high frequencies (≥20%) of PB-DLBCL, NO-

DLBCL-GCB, and a pooled literature-based DLBCL-GCB cohort. PB-DLBCL showed a unique genetic 

profile with increased frequencies of B2M, EZH2, IRF8, and TNFRSF14, and was significantly different 

(P=0.031, P=0.010, P=0.047, and P=0.003) compared to NO-DLBCL-GCB harboring high occurrences 

(but not significant) of KMT2D and TP53 aberrations (P=0.347 and P=0.325). Except for EZH2 and 

TNFRSF14 (P=0.148 and P=0.136), the occurrence of mutations in B2M and IRF8, in our cohort of PB-

DLBCL were significantly higher compared to literature-based DLBCL-GCB cohort (P=0.012 and 

P=0.020, respectively). Careful interpretation is needed, as essential data regarding exact anatomical 

localizations (e.g. ignorant for osseous involvement) were lacking for these studies. 

Figure-4 - Specific GEP-patterns for PB-DLBCL and NO-DLBCL-GCB. 

A)  A penalized logistic regression model assigned 34 differentially expressed genes between PB-

DLBCL and NO-DLBCL-GCB. As shown in the heatmap, unsupervised hierarchical clustering of these 

differential-expressed genes generated three clusters: a cluster with predominant PB-DLBCLs, a 

cluster with an agglomeration of O-DLBCL sub-entities and NO-DLBCL-GCB, and a cluster with mainly 

NO-DLBCL-GCBs. In contrast to NO-DLBCL-GCB, PB-DLBCL showed significantly (P<0.001) increased 

expression of immune response genes (CTLA4, CXCL12, HLA-A, HLA-C, HLA-E, and HLA-F). Elevated 

expressions of ARID1A and SMARCA4 (both involved in chromosome organization) and FOXO1 (a 

centroblast hallmark) was found in NO-DLBCL-GCB, as opposed to low expressions in PB-DLBCL.  

B) This bar chart demonstrates the distribution of the PB-DLBCL and NO-DLBCL-GCB sub-entities 

across elucidated clusters. 

 

Figure-5 - Three-year PFS and OS analysis for O-DLBCL and NO-DLBCL-GCB sub-entities.  

A/B) Consistent with the prognostic importance of IELSG-staging, PB-DLBCL and polyostotic-DLBCL 

demonstrated a significantly superior PFS and OS, compared to disseminated-DLBCL.  

C/D) No significant difference in PFS or OS was shown for the subdivision of NO-DLBCL-GCB into 

extranodal, nodal, and mixed groups.   

E/F) PB-DLBCL elucidated a significantly favorable PFS and OS, compared to equivalent Ann Arbor 

stage I/II NO-DLBCL-GCBs.  

G/H) With respect to Ann Arbor Stage III/IV, there was no difference in PFS or OS, between 

disseminated-DLBCL and NO-DLBCL-GCB, although polyostotic-DLBCL demonstrated an improved 

survival.  
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Figure-6 – Mechanistical overview of germinal center B-cell development related to PB-DLBCL and 

NO-DLBCL-GCB and their identified specific GEP patterns and molecular profiles.  

As described by Li et al. and corresponding with our GEP analysis demonstrating an increased 

expression of BCL2A1 and IL6R, PB-DLBCL preferentially originated in the germinal center (GC) early 

light zone of B-cell development, indicating a centrocyte-like phenotype. The predominant 

centrocyte-like GCB-phenotype in PB-DLBCL was subsequently supported by frequently mutated 

GCB-associated genes, such as B2M, EZH2, IRF8, and TNFRSF14, culminating in superior survival. 

Additionally, PB-DLBCL showed significantly (P<0.001) increased expression of immune response 

genes (CTLA4 and CXCL12), and together with frequent mutations in B2M and TNFRSF14, they are 

important for immune surveillance, suggesting that evasion from immune surveillance is crucial for 

PB-DLBCL to survive in their osseous environment. In contrast, upregulation of BCL6, MME, MYBL1, 

SMARCA4 and TCL1A suggested a centroblast-like constitution for NO-DLBCL-GCB. Accordingly, high 

expression of FOXO1, a centroblast hallmark and imperative for sustaining the GC dark zone62-65,69, 

was specifically identified in NO-DLBCL-GCB. Furthermore, elevated expression levels of ARID1A and 

SMARCA4 (both involved in chromosome organization) were found in NO-DLBCL-GCB. Together with 

frequent mutations in genes involved in epigenetics (CREBBP and MEF2B) and TP53 mutations, this 

indicates that, unlike immune evasion in PB-DLBCL, survival of NO-DLBCL-GCB is critically dependent 

on deregulation of chromosome organization and reduction of p53 activity. Summarized, our results 

emphasize that PB-DLBCL can be recognized as a distinct extranodal DLBCL, with a GCB-centrocyte-

like phenotype, a specific GEP-pattern, and a unique GCB-associated molecular constitution, 

reflecting favorable prognosis. Purple color indicates genes related to a centroblast-like phenotype, 

whereas brown colored genes are related to a centrocyte-like phenotype.  
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Characteristics PB-DLBCL (N=41) 
Polyostotic-DLBCL 

(N=14) 
Disseminated-
DLBCL (N=48) 

Extranodal NO-
DLBCL-GCB (N=16) 

Nodal NO-DLBCL-
GCB (N=19) 

Mixed NO-DLBCL-
GCB (N=28) 

Gender (Male) 24 59% 9 64% 32 67% 10 63% 13 68% 18 64% 
  

           
  

Median age (min-max; Years) 54 (18-86) 
 

56 (13-73) 
 

63 (30-91) 
 

65 (46-82) 
 

67 (35-84) 
 

63 (44-95)   
  

           
  

Ann Arbor              

I((X)E) 29 71% 0 0% 0 0% 4 25% 2 11% 0 0% 

II((X)E) 12 29% 0 0% 3 6% 2 13% 9 47% 8 29% 

III(E/S) 0 0% 0 0% 3 6% 0 0% 8 42% 2 7% 

IV 0 0% 14 100% 42 88% 10 63% 0 0% 18 64% 
             
IPI-score              

0-1 26 63% 3 21% 7 15% 6 38% 11 58% 8 29% 

2-5 15 37% 11 79% 41 85% 10 63% 8 42% 20 71% 
  

           
  

First line treatment 
           

  

R-CHOP +/- adjuvant radiotherapy* 35 85% 12 86% 42 88% 8 50% 16 84% 23 82% 

Other chemotherapy +/- adjuvant radiotherapy† 4 10% 2 14% 4 8% 0 0% 1 5% 3 11% 

High dose MTX‡ +/- adjuvant radiotherapy 0 0% 0 0% 0 0% 7 44% 0 0% 0 0% 

Palliative treatment§ 2 5% 0 0% 2 4% 1 6% 2 11% 2 7% 
  

           
  

Response to first line treatment 
           

  

CR 37 90% 14 100% 36 75% 11 69% 14 74% 18 46% 

non-CR 4 10% 0 0% 12 25% 5 31% 5 26% 10 36% 

Therapy ongoing 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 
  

           
  

Median follow-up (Months) 50 
 

53 
 

37 
 

33 
 

17 
 

22   

 

Table-1 - Patient characteristics of DLBCL with osseous involvement (O-DLBCL) and non-osseous DLBCL-GCB (NO-DLBCL-GCB).  
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* R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; N=136) and adjuvant radiotherapy (N=47) 

† CHVmP/BV (cyclophosphamide, doxorubicin, teniposide and prednisone with bleomycin and vincristine at mid-interval; N=4), CHOP (N=1), COPADM 

(cyclophosphamide, vincristine, prednisone, doxorubicin, and methotrexate; N=1), DA-EPOCH-R (dose-adjusted etoposide, prednisolone, vincristine, 

cyclophosphamide, doxorubicin, rituximab; N=5), PECC (prednisone, etoposide, chlorambucil, and lomustine; N=1), RCEOP (rituximab, cyclophosphamide, 

etoposide, vincristine, and prednisone; N=1), RCVP (rituximab, cyclophosphamide, vincristine, prednisone; N=1), and adjuvant radiotherapy (N=9) 

‡ MATRIX (high-dose methotrexate (MTX), cytarabine, thiotepa, rituximab)/BCNU (Carmustine)/autologous stem cell transplantation (N=1), MBVP (high-

dose methotrexate, BCNU, teniposide, prednisone)/HD_araC (High dose ara-cytarabine) (N=1), or RMP (Rituximab, high-dose methotrexate, and 

procarbazine; N=5), and adjuvant radiotherapy (N=2) 

§ Local radiotherapy (N=3), R-mono (N=1), or no treatment (N=5) 
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