684 research outputs found

    Radiative corrections to MhM_h from three generations of Majorana neutrinos and sneutrinos

    Get PDF
    In this work we study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections, and analyze in full detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different possible renormalization schemes and their implications is included.Comment: 42 pages, 39 figures, 1 appendix, version published in AHE

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    In silico evaluation of ultrafiltration and nanofiltration membrane cascades for continuous fractionation of protein hydrolysate from tuna processing byproduct

    Get PDF
    The present work proposes the design of cascades that integrate ultrafiltration (UF) and nanofiltration (NF) membranes to separate the different protein fractions from the protein hydrolysate obtained after hydrolysis of tuna byproducts. Experimental data (permeate flux and rejection of protein fractions under different applied pressures) previously obtained and published by this research group were fitted to empirical models, which were the basis for a process simulation model. High recovery rates (0.9) in the UF stages implied high process yields by reduced desired fraction losses, while similar recovery rates in the NF stages were required for high product purity. However, the applied pressures were not so influential over the performance of the system. Optimization problems were solved to identify the optimal design and operation conditions to maximize the product purity or the process yield. Maximal purity of the preferred 1-4 kDa fraction (49.3% from 19.0% in feed stream) obtained by the configuration with 3 UF stages and another 3 NF stages implied 2 and 5 bar pressures applied in the UF and NF stages, respectively, while 0.9 was the optimal recovery rate value for all the stages. These maximal purity conditions resulted in 62.6% process yield, defined as the percentage of the 1-4 kDa fraction in the feed stream recovered in the product stream. In addition, multiobjective optimization of the process was also carried out to obtain the Pareto graphs that represent the counterbalance between maximal yields and purities

    Spin-phonon coupling in epitaxial Sr0.6Ba0.4MnO3 thin films

    Get PDF
    Spin-phonon coupling is investigated in epitaxially strained Sr1-xBaxMnO3 thin films with perovskite structure by means of microwave (MW) and infrared (IR) spectroscopy. In this work we focus on the Sr0.6Ba0.4MnO3 composition grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate. The MW complex electromagnetic response shows a decrease in the real part and a clear anomaly in the imaginary part around 150 K. Moreover, it coincides with a 17% hardening of the lowest-frequency polar phonon seen in IR reflectance spectra. In order to further elucidate this phenomenon, low-energy muon-spin spectroscopy was carried out, signaling the emergence of antiferromagnetic order with Néel temperature (TN) around 150 K. Thus, our results confirm that epitaxial Sr0.6Ba0.4MnO3 thin films display strong spin-phonon coupling below TN, which may stimulate further research on tuning the magnetoelectric coupling by controlling the epitaxial strain and chemical pressure in the Sr1-xBaxMnO3 system

    Neorealism and the Organization of American States (OAS): an examination of CARICOM rationality toward Venezuela and the United States

    Get PDF
    Since 2017, CARICOM member states have been divided in the positions they take on Organization of American States (OAS) resolutions addressing political instability in Venezuela. This article uses a neorealism framework to determine whether or not the provision of energy investments by Venezuela and the United States to CARICOM member countries is an attempt on their part to skew the OAS voting mechanism in their national interests. The article also examines the extent to which CARICOM member states’ response to Venezuela’s and United States’ interest in the OAS demonstrates a pattern of rationality. The findings suggest that though the OAS provides a medium for states to negotiate mutually beneficial solutions, states are rational actors and even where they do corporate, dominant states may try to manifest their self-interest

    Weak-antilocalization signatures in the magnetotransport properties of individual electrodeposited Bi Nanowires

    Get PDF
    We study the electrical resistivity of individual Bi nanowires of diameter 100 nm fabricated by electrodeposition using a four-probe method in the temperature range 5-300 K with magnetic fields up to 90 kOe. Low-resistance Ohmic contacts to individual Bi nanowires are achieved using a focused ion beam to deposit W-based nanocontacts. Magnetoresistance measurements show evidence for weak antilocalization at temperatures below 10 K, with a phase-breaking length of 100 nm

    Controlled Magnetic Anisotropy in Single Domain Mn-doped Biosynthesized Nanoparticles

    Get PDF
    Magnetotactic bacteria Magnetospirillum gryphiswaldense synthesize cubo-octahedral shaped magnetite nanoparticles, called magnetosomes, with a mean diameter of 40 nm. The high quality of the biosynthesized nanoparticles makes them suitable for numerous applications in fields like cancer therapy, among others. The magnetic properties of magnetite magnetosomes can be tailored by doping them with transition metal elements, increasing their potential applications. In this work, we address the effect of Mn doping on the main properties of magnetosomes by the combination of structural and magnetic characterization techniques. Energy-dispersive X-ray spectroscopy, X-ray absorption nearedge structure, and X-ray magnetic circular dichroism results reveal a Mn dopant percentage of utmost 2.3%, where Mn cations are incorporated as a combination of Mn2+ and Mn3+, preferably occupying tetrahedral and octahedral sites, respectively. Fe substitution by Mn notably alters the magnetic behavior of the doped magnetosomes. Theoretical modeling of the experimental hysteresis loops taken between 5 and 300 K with a modified Stoner-Wohlfarth approach highlights the different anisotropy contributions of the doped magnetosomes as a function of temperature. In comparison with the undoped magnetosomes, Mn incorporation alters the magnetocrystalline anisotropy introducing a negative and larger cubic anisotropy down to the Verwey transition, which appears shifted to lower temperature values as a consequence of Mn doping. On the other hand, Mn-doped magnetosomes show a decrease in the uniaxial anisotropy in the whole temperature range, most likely associated with a morphological modification of the Mn-doped magnetosomes.The Spanish and Basque Governments are acknowledged for funding under project numbers MAT2017- 83631-C3-R and IT-1245-19, respectively

    Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    Get PDF
    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1

    Strain tuning of N el temperature in YCrO3 epitaxial thin films

    Get PDF
    Epitaxial strain is a useful handle to engineer the physical properties of perovskite oxide materials. Here, we apply it to orthorhombic chromites that are a family of antiferromagnets showing fruitful functionalities as well as strong spin lattice coupling via antisymmetric exchange interaction along Cr O Cr bonds. Using pulsed laser deposition, we grow YCrO3 thin films on various substrates imposing strain levels in the range from amp; 8722;1.8 to 0.3 . The films are stoichiometric with a 3 valence for Cr both within the films and at their surface. They display an antiferromagnetic spin order below their N el temperature, which we show can be strongly tuned by epitaxial strain with a slope of amp; 8722;8.54 K . A dimensionless figure of merit defined as the slope normalized by the N el temperature of bulk is determined to be 6.1, which is larger than that of other perovskites, such as manganites 5.5 , ferrites 2.3 , or nickelates 4.6 . Density functional theory simulations bring insight into the role of Cr O bond lengths and oxygen octahedral rotations on the observed behavior. Our results shed light on orthorhombic chromites that may offer an energy efficient piezo spintronic operatio
    corecore