19 research outputs found

    Forecasting creditworthiness in retail banking: a comparison of cascade correlation neural networks, CART and logistic regression scoring models

    Get PDF
    The preoccupation with modelling credit scoring systems including their relevance to forecasting and decision making in the financial sector has been with developed countries whilst developing countries have been largely neglected. The focus of our investigation is the Cameroonian commercial banking sector with implications for fellow members of the Banque des Etats de L’Afrique Centrale (BEAC) family which apply the same system. We investigate their currently used approaches to assessing personal loans and we construct appropriate scoring models. Three statistical modelling scoring techniques are applied, namely Logistic Regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN). To compare various scoring models’ performances we use Average Correct Classification (ACC) rates, error rates, ROC curve and GINI coefficient as evaluation criteria. The results demonstrate that a reduction in terms of forecasting power from 15.69% default cases under the current system, to 3.34% based on the best scoring model, namely CART can be achieved. The predictive capabilities of all three models are rated as at least very good using GINI coefficient; and rated excellent using the ROC curve for both CART and CCNN. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies borrower’s account functioning, previous occupation, guarantees, car ownership, and loan purpose as key variables in the forecasting and decision making process which are at the heart of overall credit policy

    Forecasting creditworthiness in retail banking: a comparison of cascade correlation neural networks, CART and logistic regression scoring models

    Get PDF
    The preoccupation with modelling credit scoring systems including their relevance to forecasting and decision making in the financial sector has been with developed countries whilst developing countries have been largely neglected. The focus of our investigation is the Cameroonian commercial banking sector with implications for fellow members of the Banque des Etats de L’Afrique Centrale (BEAC) family which apply the same system. We investigate their currently used approaches to assessing personal loans and we construct appropriate scoring models. Three statistical modelling scoring techniques are applied, namely Logistic Regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN). To compare various scoring models’ performances we use Average Correct Classification (ACC) rates, error rates, ROC curve and GINI coefficient as evaluation criteria. The results demonstrate that a reduction in terms of forecasting power from 15.69% default cases under the current system, to 3.34% based on the best scoring model, namely CART can be achieved. The predictive capabilities of all three models are rated as at least very good using GINI coefficient; and rated excellent using the ROC curve for both CART and CCNN. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies borrower’s account functioning, previous occupation, guarantees, car ownership, and loan purpose as key variables in the forecasting and decision making process which are at the heart of overall credit policy

    Exploiting Performance Counters to Predict and Improve Energy Performance of HPC Systems

    Get PDF
    International audienceHardware monitoring through performance counters is available on almost all modern processors. Although these counters are originally designed for performance tuning, they have also been used for evaluating power consumption. We propose two approaches for modelling and understanding the behaviour of high performance computing (HPC) systems relying on hardware monitoring counters. We evaluate the effectiveness of our system modelling approach considering both optimising the energy usage of HPC systems and predicting HPC applications' energy consumption as target objectives. Although hardware monitoring counters are used for modelling the system, other methods -- including partial phase recognition and cross platform energy prediction -- are used for energy optimisation and prediction. Experimental results for energy prediction demonstrate that we can accurately predict the peak energy consumption of an application on a target platform; whereas, results for energy optimisation indicate that with no a priori knowledge of workloads sharing the platform we can save up to 24\% of the overall HPC system's energy consumption under benchmarks and real-life workloads

    A Runtime Framework for Energy Efficient HPC Systems Without a Priori Knowledge of Applications

    Get PDF
    International audienceThe rising computing demands of scientific endeavours often require the creation and management of High Performance Computing (HPC) systems for running experiments and processing vast amounts of data. These HPC systems generally operate at peak performance, consuming a large quantity of electricity, even though their workload varies over time. Understanding the behavioural patterns i.e., phases) of HPC systems during their use is key to adjust performance to resource demand and hence improve the energy efficiency. In this paper, we describe (i) a method to detect phases of an HPC system based on its workload, and (ii) a partial phase recognition technique that works cooperatively with on-the-fly dynamic management. We implement a prototype that guides the use of energy saving capabilities to demonstrate the benefits of our approach. Experimental results reveal the effectiveness of the phase detection method under real-life workload and benchmarks. A comparison with baseline unmanaged execution shows that the partial phase recognition technique saves up to 15% of energy with less than 1% performance degradation

    Beyond CPU Frequency Scaling for a Fine-grained Energy Control of HPC Systems

    Get PDF
    International audienceModern high performance computing subsystems (HPC) - including processor, network, memory, and IO - are provided with power management mechanisms. These include dynamic speed scaling and dynamic resource sleeping. Understanding the behavioral patterns of high performance computing systems at runtime can lead to a multitude of optimization opportunities including controlling and limiting their energy usage. In this paper, we present a general purpose methodology for optimizing energy performance of HPC systems consid- ering processor, disk and network. We rely on the concept of execution vector along with a partial phase recognition technique for on-the-fly dynamic management without any a priori knowledge of the workload. We demonstrate the effectiveness of our management policy under two real-life workloads. Experimental results show that our management policy in comparison with baseline unmanaged execution saves up to 24% of energy with less than 4% performance overhead for our real-life workloads

    DNA-inspired Scheme for Building the Energy Profile of HPC Systems

    Get PDF
    International audienceEnergy usage is becoming a challenge for the design of next generation large scale distributed systems. This paper explores an inno- vative approach of profiling such systems. It proposes a DNA-like solution without making any assumptions on the running applications and used hardware. This profiling based on internal counters usage and energy monitoring allows to isolate specific phases during the execution and enables some energy consumption control and energy usage prediction. First experimental validations of the system modeling are presented and analyzed

    Energy efficiency in HPC with and without knowledge of applications and services

    Get PDF
    International audienceThe constant demand of raw performance in high performance computing often leads to high performance systems' over-provisioning which in turn can result in a colossal energy waste due to workload/application variation over time. Proposing energy efficient solutions in the context of large scale HPC is a real unavoidable challenge. This paper explores two alternative approaches (with or without knowledge of applications and services) dealing with the same goal: reducing the energy usage of large scale infrastructures which support HPC applications. This article describes the first approach "with knowledge of applications and services'' which enables users to choose the less consuming implementation of services. Based on the energy consumption estimation of the different implementations (protocols) for each service, this approach is validated on the case of fault tolerance service in HPC. The approach "without knowledge'' allows some intelligent framework to observe the life of HPC systems and proposes some energy reduction schemes. This framework automatically estimates the energy consumption of the HPC system in order to apply power saving schemes. Both approaches are experimentally evaluated and analyzed in terms of energy efficiency

    Predicting creditworthiness in retail banking with limited scoring data

    Get PDF
    The preoccupation with modelling credit scoring systems including their relevance to predicting and decision making in the financial sector has been with developed countries, whilst developing countries have been largely neglected. The focus of our investigation is on the Cameroonian banking sector with implications for fellow members of the Banque des Etats de L'Afrique Centrale (BEAC) family which apply the same system. We apply logistic regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN) in building our knowledge-based scoring models. To compare various models’ performances, we use ROC curves and Gini coefficients as evaluation criteria and the Kolmogorov-Smirnov curve as a robustness test. The results demonstrate that an improvement in terms of predicting power from 15.69% default cases under the current system, to 7.68% based on the best scoring model, namely CCNN can be achieved. The predictive capabilities of all models are rated as at least very good using the Gini coefficient; and rated excellent using the ROC curve for CCNN. Our robustness test confirmed these results. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies previous occupation, borrower's account functioning, guarantees, other loans and monthly expenses as key variables in the forecasting and decision making processes which are at the heart of overall credit policy

    Effects of landscape context and agricultural practices on the abundance of cotton bollworm Helicoverpa armigera in cotton fields: A case study in northern Benin

    No full text
    International audienceHelicoverpa armigera (H€ubner) (Lepidoptera: Noctuidae) is a polyphagous pest of global importance, threatening several key crops, including cotton. This study analysed the influence of landscape composition and agricultural practices on (i) the abundance of H. armigera larvae, and (ii) the proportion of infested plants (infestation) in cotton fields in northern Benin. In 2011 and 2012, the abundance of H. armigera was monitored during the rainy period, with weekly observations of 50 cotton plants in 20 fields selected each year. We selected cotton fields based upon the composition of the surrounding landscape (cotton, tomato and maize fields, and areas of natural vegetation) within 500 metres radius buffers. We also recorded agricultural practices, included sowing date, crop rotation, and frequencies of weeding and of treatment with insecticides. In testing for a relationship between the pest problem and landscape and management, we fitted logistic multiple regression models and compared all the possible models using an information-theoretic approach. Cotton fields surrounded by cotton crops were found to have significantly higher infestation rates. Natural vegetation was positively correlated with the level of infestation. This study highlights the importance of considering both landscape variables and agricultural practices to improve strategies management of H. armigera
    corecore