4,865 research outputs found

    Affordable Housing as an Adequate Public Facility

    Get PDF

    Factors Affecting Residential Property Development Patterns

    Get PDF
    The pattern of residential development within the context of metropolitan growth and development has been the subject of an extensive literature. Among the streams of literature have been monocentric and policentric models, rent gradients and population density, and spatial mismatch and jobs/housing balance. Less explored have been the factors determining the specific location of development from within a larger set of suitable locations. This paper uses a disaggregated data set, county property appraiser data, to track the number of new single-family housing units built in each section (square mile) of Alachua County, Florida by the year built over a twenty- year period. The paper explores the role of transportation, large-scale development, employment nodes, existing patterns of development, and regulation on the spatial pattern of development. As discussions turn to smart growth, compact development, and the alleviation of sprawl, it is important to understand the forces that contribute to observed development patterns.

    The Economics of Linkage Fees

    Get PDF

    Filtering in Office Markets: Evidence from Medium-Size Cities

    Get PDF
    Filtering, a change in the quality of use for a structure, has been studied extensively in housing. However, there are reasons to believe that the phenomenon is at least as significant in office markets. Reasons to expect filtering in office markets are presented in this article. Then evidence of filtering is examined from two medium-size cities. The findings are strongly consistent with the presumed effects of filtering. As expected, evidence of filtering is least significant for large downtown highrise offices, more significant among clustered suburban office buildings, and most significant among isolated office buildings.

    Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties

    Full text link
    [EN] In this work, we study the full randomized versions of Airy, Hermite and Laguerre differential equations, which depend on a random variable appearing as an equation coefficient as well as two random initial conditions. In previous contributions, the mean square stochastic solutions to the aforementioned random differential equations were constructed via the Frobenius method, under the assumption of exponential growth of the absolute moments of the equation coefficient, which is equivalent to its essential boundedness. In this paper we aim at relaxing the boundedness hypothesis to allow more general probability distributions for the equation coefficient. We prove that the equations are solvable in the mean square sense when the equation coefficient has finite moment-generating function in a neighborhood of the origin. A thorough discussion of the new hypotheses is included.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P.Calatayud Gregori, J.; Cortés, J.; Jornet Sanz, M. (2020). Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties. Stochastic Analysis and Applications. 38(5):875-885. https://doi.org/10.1080/07362994.2020.1733017S875885385Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8Gregori, J., López, J., & Sanz, M. (2018). Some Notes to Extend the Study on Random Non-Autonomous Second Order Linear Differential Equations Appearing in Mathematical Modeling. Mathematical and Computational Applications, 23(4), 76. doi:10.3390/mca23040076Calbo, G., Cortés, J.-C., & Jódar, L. (2010). Mean square power series solution of random linear differential equations. Computers & Mathematics with Applications, 59(1), 559-572. doi:10.1016/j.camwa.2009.06.007Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2010). Analytic stochastic process solutions of second-order random differential equations. Applied Mathematics Letters, 23(12), 1421-1424. doi:10.1016/j.aml.2010.07.011CALBO SANJUÁN, G. (s. f.). Mean Square Analytic Solutions of Random Linear Models. doi:10.4995/thesis/10251/8721Jagadeesan, M. (2017). Simple analysis of sparse, sign-consistent JL. arXiv:1708.02966.Lin, G. D. (2017). Recent developments on the moment problem. Journal of Statistical Distributions and Applications, 4(1). doi:10.1186/s40488-017-0059-2Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.04

    Thunderstorms Producing Sferic-Geolocated Gamma-Ray Flashes Detected by TETRA-II

    Get PDF
    The terrestrial gamma-ray flash (TGF) and Energetic Thunderstorm Rooftop Array (TETRA-II) detected 22 X-ray/gamma-ray flash events associated with lightning between October 2015 and March 2019 across three ground-based detector locations in subtropical and tropical climates in Louisiana, Puerto Rico, and Panama. Each detector array consists of a set of bismuth germanate scintillators that record X-ray and gamma-ray bursts over the energy range 50 keV–6 MeV (million electron volts). TETRA-II events have characteristics similar to both X-ray bursts associated with lightning leaders and TGFs: sub-millisecond duration, photons up to MeV energies, and association with nearby lightning (typically within 3 km). About 20 of the 22 events are geolocated to individual lightning strokes via spatiotemporally coincident sferics. An examination of radar reflectivity and derived products related to events located within the Next Generation Weather Radar (NEXRAD) monitoring region indicates that events occur within mature cells of severe and non-severe multicellular and squall line thunderstorms, with core echo tops which are at or nearing peak altitude. Events occur in both high lightning frequency thunderstorm cells and low lightning frequency cells. Events associated with high frequency cells occur within 5 min of significant lightning jumps. Among NEXRAD-monitored events, hail is present within 8 km and 5 min of all except a single low-altitude cold weather thunderstorm. An association is seen with maximum thunderstorm development, lightning jumps, and hail cells, indicating that the TETRA-II X-ray/gamma-ray events are associated with the peak storm electrification and development of electric fields necessary for the acceleration of electrons to high energies

    Correlated X-ray Spectral and Timing Behavior of the Black Hole Candidate XTE J1550-564: A New Interpretation of Black Hole States

    Get PDF
    We present an analysis of RXTE data of the X-ray transient XTE J1550-564. The source went through several states, which were divided into spectrally soft and hard states. These states showed up as distinct branches in the color-color diagram, forming a structure with a comb-like topology; the soft state branch forming the spine and the hard state branches forming the teeth. Variability was strongly correlated with the position on the branches. The broad band noise became stronger, and changed from power law like to band limited, as the spectrum became harder. Three types of QPOs were found: 1-18 Hz and 102-284 Hz QPOs on the hard branches, and 16-18 Hz QPOs on and near the soft branch. The frequencies of the high and low frequency QPOs on the hard branches were correlated with each other, and anti-correlated with spectral hardness. The changes in QPO frequency suggest that the inner disc radius only increases by a factor of 3-4 as the source changes from a soft to a hard state. Our results on XTE J1550-564 strongly favor a 2-dimensional description of black hole behavior, where the regions near the spine of the comb in the color-color diagram can be identified with the high state, and the teeth with transitions from the high state, via the intermediate state (which includes the very high state) to the low state, and back. The two physical parameters underlying this behavior vary to a large extent independently and could for example be the mass accretion rate through the disk and the size of a Comptonizing region.Comment: 49 pages (inlcuding 26 figures and 4 tables), accepted for publication in ApJ Supplement

    Observing Extended Sources with the \Herschel SPIRE Fourier Transform Spectrometer

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to \theta_{D} ~ 17". We demonstrate how the angular size of an extended source can be estimated using the difference between the sub-spectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959<\nu<989 GHz. Using this technique on an observation of Saturn, we estimate a size of 17.2", which is 3% larger than its true size on the day of observation. Finally, we show the results of the correction applied on observations of a nearby galaxy, M82, and the compact core of a Galactic molecular cloud, Sgr B2.Comment: Accepted for publication by A&
    corecore