150 research outputs found

    Prenatal Ultrasound Screening: False Positive Soft Markers May Alter Maternal Representations and Mother-Infant Interaction

    Get PDF
    International audienceBackground : In up to 5% of pregnancies, ultrasounds screenin detects a " soft marker" (SM) that places the foetus at risk for a severe abnormality. In most cases, prenatal diagnostic work-up rules out a severe defect. We aimed to study the effects of false positive SM on maternal emotional status, maternal representations of the infant, and mother-infant interaction. Methology and Principal Findings : Utilizing an extreme-case prospective case control design, we selected frome a group of 244 women undergroing ultrasound, 19 pregnant women whose foetus had a positive SM screening and reassuring diagnostic work up, and 19 controls without SM matched for age and education. In the third trimester of pregnancy, within one week after delivery, and 2 months postpartum, we assessed anxiety, depression and maternal representations; Mother-infant interactions were videotaped during feeding within one week after delivery and again at 2 months postpartum and coded blindly using Coding Interactive behavior (CIB) scales. Anxiety and depression scores were significantly higher at alla ssessment points in the SM group. Maternal representations were also observd in the SM groyp. These dyads showed greater dysregulation, lower maternal sensitivity, higher maternal intrusive behaviour and higher infant avoidance. Multivariate analysis showed that maternal representation and depression at third trimester predicted mother-infant interaction.Conclusion : False positive ultrasound screenings for SM are not benign and negatively affect the developping maternal-infant attachment. Medical efforts should be directed to minimize as much as possible such false diagnoses, and to the psychological adverse consequences

    Interventional Strategies to Delay Aging-Related Dysfunctions of the Musculoskeletal System

    Get PDF
    Aging affects bones, cartilage, muscles, and other connective tissue in the musculoskeletal system, leading to numerous age-related pathologies including osteoporosis, osteoarthritis, and sarcopenia. Understanding healthy aging may therefore open new therapeutic targets, thereby leading to the development of novel approaches to prevent several age-related orthopaedic diseases. It is well recognized that aging-related stem cell depletion and dysfunction leads to reduced regenerative capacity in various musculoskeletal tissues. However, more recent evidence suggests that dysregulated autophagy and cellular senescence might be fundamental mechanisms associated with aging-related musculoskeletal decline. The mammalian/mechanical target of Rapamycin (mTOR) is known to be an essential negative regulator of autophagy, and its inhibition has been demonstrated to promote longevity in numerous species. Besides, several reports demonstrate that selective elimination of senescent cells and their cognate Senescence-Associated Secretory Phenotype (SASP) can mitigate musculoskeletal tissue decline. Therefore, senolytic drugs/agents that can specifically target senescent cells, may offer a novel therapeutic strategy to treat a litany of age-related orthopaedic conditions. This chapter focuses on osteoarthritis and osteoporosis, very common debilitating orthopaedic conditions, and reviews current concepts highlighting new therapeutic strategies, including the mTOR inhibitors, senolytic agents, and mesenchymal stem cell (MSC)-based therapies

    Treatment of a hip capsular injury in a professional soccer player with platelet-rich plasma and bone marrow aspirate concentrate therapy

    Get PDF
    Abstract This report presents a 27-year-old male professional soccer player who developed heterotopic ossification of his hip capsule and gluteus minimus tendon after an arthroscopic hip procedure. After removal of the heterotopic bone, the patient had a symptomatic deficiency of his hip capsule and gluteus minimus tendon. A series of orthobiologic treatments with platelet-rich plasma and bone marrow aspirate concentrate improved the patient's pain and strength as well as the morphologic appearance of the hip capsule and gluteus minimus tendon on magnetic resonance imaging. A series of motion analyses demonstrated significant improvement in his stance-leg ground reaction force and hip abduction, as well as linear foot velocity at ball strike and maximum hip flexion following ball strike in his kicking leg. Level of evidence IV

    Doha agreement meeting on terminology and definitions in groin pain in athletes.

    Get PDF
    BACKGROUND: Heterogeneous taxonomy of groin injuries in athletes adds confusion to this complicated area. AIM: The 'Doha agreement meeting on terminology and definitions in groin pain in athletes' was convened to attempt to resolve this problem. Our aim was to agree on a standard terminology, along with accompanying definitions. METHODS: A one-day agreement meeting was held on 4 November 2014. Twenty-four international experts from 14 different countries participated. Systematic reviews were performed to give an up-to-date synthesis of the current evidence on major topics concerning groin pain in athletes. All members participated in a Delphi questionnaire prior to the meeting. RESULTS: Unanimous agreement was reached on the following terminology. The classification system has three major subheadings of groin pain in athletes: 1. Defined clinical entities for groin pain: Adductor-related, iliopsoas-related, inguinal-related and pubic-related groin pain. 2. Hip-related groin pain. 3. Other causes of groin pain in athletes. The definitions are included in this paper. CONCLUSIONS: The Doha agreement meeting on terminology and definitions in groin pain in athletes reached a consensus on a clinically based taxonomy using three major categories. These definitions and terminology are based on history and physical examination to categorise athletes, making it simple and suitable for both clinical practice and research

    Analysing Spatio-Temporal Clustering of Meningococcal Meningitis Outbreaks in Niger Reveals Opportunities for Improved Disease Control

    Get PDF
    Meningococcal meningitis (MM) is an infection of the meninges caused by a bacterium, Neisseria meningitidis, transmitted through respiratory and throat secretions. It can cause brain damage and results in death in 5–15% of cases. Large epidemics of MM occur almost every year in sub-Saharan Africa during the hot, dry season. Understanding how epidemics emerge and spread in time and space would help public health authorities to develop more efficient strategies for the prevention and the control of meningitis. We studied the spatio-temporal distribution of MM cases in Niger from 2002 to 2009 at the scale of the health centre catchment areas (HCCAs). We found that spatial clusters of cases most frequently occurred within nine districts out of 42, which can assist public health authorities to better adjust allocation of resources such as antibiotics or rapid diagnostic tests. We also showed that the epidemics break out in different HCCAs from year to year and did not follow a systematic geographical direction. Finally, this analysis showed that surveillance at a finer spatial scale (health centre catchment area rather than district) would be more efficient for public health response: outbreaks would be detected earlier and reactive vaccination would be better targeted

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Rapid glaciation and a two-step sea-level plunge into The Last Glacial Maximum

    Get PDF
    The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth’s recent climate history1. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower2,3. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago4 and was followed by about 10,000 years of rapid deglaciation into the Holocene1. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to −118 metres relative to the modern level. Our findings are based on recovered and radiometrically dated fossil corals and coralline algae assemblages, and represent relative sea level at the Great Barrier Reef, rather than GMSL. Subsequently, relative sea level rose at a rate of about 3.5 millimetres per year for around 4,000 years. The rise is consistent with the warming previously observed at 19,000 years ago1,5, but we now show that it occurred just after the 20-metre drop in relative sea level and the related increase in global ice volumes. The detailed structure of our record is robust because the Great Barrier Reef is remote from former ice sheets and tectonic activity. Relative sea level can be influenced by Earth’s response to regional changes in ice and water loadings and may differ greatly from GMSL. Consequently, we used glacio-isostatic models to derive GMSL, and find that the Last Glacial Maximum culminated 20,500 years ago in a GMSL low of about −125 to −130 metres.Financial support of this research was provided by the JSPS KAKENHI (grant numbers JP26247085, JP15KK0151, JP16H06309 and JP17H01168), the Australian Research Council (grant number DP1094001), ANZIC, NERC grant NE/H014136/1 and Institut Polytechnique de Bordeaux
    • …
    corecore