14 research outputs found

    Birth Weight and Adult IQ, but Not Anxious-Depressive Psychopathology, Are Associated with Cortical Surface Area: A Study in Twins

    Get PDF
    BACKGROUND: Previous research suggests that low birth weight (BW) induces reduced brain cortical surface area (SA) which would persist until at least early adulthood. Moreover, low BW has been linked to psychiatric disorders such as depression and psychological distress, and to altered neurocognitive profiles. AIMS: We present novel findings obtained by analysing high-resolution structural MRI scans of 48 twins; specifically, we aimed: i) to test the BW-SA association in a middle-aged adult sample; and ii) to assess whether either depression/anxiety disorders or intellectual quotient (IQ) influence the BW-SA link, using a monozygotic (MZ) twin design to separate environmental and genetic effects. RESULTS: Both lower BW and decreased IQ were associated with smaller total and regional cortical SA in adulthood. Within a twin pair, lower BW was related to smaller total cortical and regional SA. In contrast, MZ twin differences in SA were not related to differences in either IQ or depression/anxiety disorders. CONCLUSION: The present study supports findings indicating that i) BW has a long-lasting effect on cortical SA, where some familial and environmental influences alter both foetal growth and brain morphology; ii) uniquely environmental factors affecting BW also alter SA; iii) higher IQ correlates with larger SA; and iv) these effects are not modified by internalizing psychopathology.This work was supported by the Spanish SAF2008-05674, European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS; MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the PIM2010-ERN- 00642 in frame of ERA-NET NEURON. A. Córdova- Palomera was funded by The National Council for Science and Technology (CONACyT, Mexico). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Widespread white matter microstructural abnormalities in bipolar disorder: Evidence from mega- and meta-analyses across 3,033 individuals

    Get PDF
    Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R2 = 0.041, Pcorr < 0.001) and cingulum (right: R2 = 0.041, left: R2 = 0.040, Pcorr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org

    Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder

    Get PDF
    First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = −0.42, p = 3 × 10−5), with weak evidence of IQ reductions among BD-FDRs (d = −0.23, p =.045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment

    Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals

    Get PDF
    Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R2 = 0.041, Pcorr < 0.001) and cingulum (right: R2 = 0.041, left: R2 = 0.040, Pcorr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org

    “A circle and a triangle dancing together”: Alteration of social cognition in schizophrenia compared to autism spectrum disorders

    No full text
    International audienceDifficulties in social cognition are present both in persons with schizophrenia (SCZ) and persons with autism spectrum disorders (ASD). However, qualitative similarities and differences in this field remain unclear. The aim of this study was to explore attribution of intentionality in patients with recent onset SCZ in comparison to patients with high functioning ASD, and to explore relationships between alterations in attribution and clinical profile. Animated shapes are a non-verbal Theory of Mind (ToM) task involving the interpretation of geometric figure interactions in three conditions: random, goal-directed and ToM. We compared 51 young adults with SCZ, 32 with ASD and 23 healthy controls (HC) matched for age and gender. In random, goal-directed and ToM conditions, persons with SCZ attributed less intentionality with less appropriate answers than HC, while the same anomalies were only found in the ToM condition in persons with ASD. In SCZ, thought and langage disorganization and earlier age at onset were correlated with intentionality score in the random condition. Moreover, a mixed ToM impairment was found in SCZ, combining undermentalizing (for movements involving a mental state) similar to what was found in ASD, and overmentalizing (for random movements), related to dizorganization and precocity of the first psychotic episode. In the frame of the hypothesis of a continuum, these results underline both similarities and differences between autism and schizophrenia

    In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics throughMeta-AnalysisBipolar Disorder Working Group

    No full text
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen'sd = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD
    corecore