1,596 research outputs found
Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
Human exploration of space: A review of NASA's 90-day study and alternatives
The National Research Council (NRC) examines the NASA Report of the 90-Day Study on Human Exploration of the Moon and Mars, and alternative concepts. Included in this paper, prepared for the National Space Council, are the answers to a challenging set of questions posed by the Vice President. Concerns addressed include: the appropriate pace, the scope of human exploration, the level of long-term support required, the technology development available and needed, the feasibility of long-duration human spaceflight in a low-gravity environment, scientific objectives, and other considerations such as costs and risks
Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor–positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor–positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. Significance:
Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors
The metabolic co-regulator PGC1α suppresses prostate cancer metastasis
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α–ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment
A Potential Role for Bat Tail Membranes in Flight Control
Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control
Small pelagic fish supply abundant and affordable micronutrients to low- and middle-income countries
Wild-caught fish provide an irreplaceable source of essential nutrients in food-insecure places. Fishers catch thousands of species, yet the diversity of aquatic foods is often categorized homogeneously as ‘fish’, obscuring an understanding of which species supply affordable, nutritious and abundant food. Here, we use catch, economic and nutrient data on 2,348 species to identify the most affordable and nutritious fish in 39 low- and middle-income countries. We find that a 100 g portion of fish cost between 10 and 30% of the cheapest daily diet, with small pelagic fish (herring, sardine, anchovy) being the cheapest nutritious fish in 72% of countries. In sub-Saharan Africa, where nutrient deficiencies are rising
Genotype, haplotype and copy-number variation in worldwide human populations
Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups(1-3). Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms ( SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected-including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas-the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62552/1/nature06742.pd
Fixation of the Cemented Stem: Clinical Relevance of the Porosity and Thickness of the Cement Mantle
The aim of this review paper is to define the fixation of the cemented stem. Polymethyl methacrylate, otherwise known as “bone cement”, has been used in the fixation of hip implants since the early 1960s. Sir John Charnley, the pioneer of modern hip replacement, incorporated the use of cement in the development of low frictional torque hip arthroplasty. In this paper, the concepts of femoral stem design and fixation, clinical results, and advances in understanding of the optimal use of cement are reviewed. The purpose of this paper is to help understanding and discussions on the thickness and the porosity of the cement mantle in total hip arthroplasty. Cement does not act as an adhesive, as sometimes thought, but relies on an interlocking fit to provide mechanical stability at the cement–bone interface, while at the prosthesis– cement interface it achieves stability by optimizing the fit of the implant in the cement mantle, such as in a tapered femoral stem
- …