1,028 research outputs found

    Effective grain size refinement of an Fe-24Ni-0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martensitic transformation and its reverse transformation

    Get PDF
    Metastable austenitic steels having ultrafine grained (UFG) microstructures can be fabricated by conventional cold rolling and annealing processes by utilizing the deformation-induced martensitic transformation during cold rolling and its reverse transformation to austenite upon annealing. However, such processes are not applicable when the austenite has high mechanical stability against deformation-induced martensitic transformation, since there is no sufficient amount of martensite formed during cold rolling. In the present study, a two-step cold rolling and annealing process was applied to an Fe-24Ni-0.3C metastable austenitic steel having high mechanical stability. Prior to the cold rolling, a repetitive subzero treatment and reverse annealing treatment were applied. Such a treatment dramatically decreased the mechanical stability of the austenite and greatly accelerated the formation of deformation-induced martensite during the following cold rolling processes. As a result, the grain refinement was significantly promoted, and a fully recrystallized specimen with a mean austenite grain size of 0.5 μm was successfully fabricated, which exhibited both high strength and high ductility

    Mesoscopic nature of serration behavior in high-Mn austenitic steel

    Get PDF
    セレーション挙動の解明 --高強度・高延性を示す高Mn鋼の変形の本質に迫る--. 京都大学プレスリリース. 2020-12-25.We have thoroughly clarified the mesoscopic nature of serration behavior in a high-Mn austenitic steel in connection with its characteristic localized deformation. A typical high-Mn steel, Fe-22Mn-0.6C (wt. %), with a face centered cubic (FCC) single-phase structure was used in the present study. After 4 cycles of repeated cold-rolling and annealing process, a specimen with a fully recrystallized microstructure having a mean grain size of 2.0 μm was obtained. The specimen was tensile tested at room temperature at an initial strain rate of 8.3 × 10−4 s−1, during which the digital image correlation (DIC) technique was applied for analyzing local strain and strain-rate distributions in the specimen. Obtained results indicated that a unique strain localization behavior characterized by the formation, propagation and annihilation of deformation localized bands, so-called Portevin–Le Chatelier (PLC) bands, determined the global mechanical response appearing as serration on the stress-strain curve. In addition, the in-situ synchrotron XRD diffraction during the tensile test was utilized to understand what was happening in the material with respect to the PLC banding. Lattice strain of (200) plane nearly perpendicular to the tensile direction dropped when every PLC band passed through the beam position, which indicated a stress relaxation occurred inside the PLC band. At the same time, the dislocation density increased drastically when the PLC band passed the beam position, which described that the material was plastically deformed and work-hardened mostly within the PLC band. All the results obtained consistently explained the serration behavior in a mesoscopic scale. The serration behavior on the stress-strain curve totally corresponded to the formation, propagation and annihilation of the PLC band in the 22Mn-0.6C steel, and the localized deformation, i.e., the PLC banding, governed the characteristic strain hardening of the material

    Unexpected dynamic transformation from α phase to β phase in zirconium alloy revealed by in-situ neutron diffraction during high temperature deformation

    Get PDF
    Dynamic transformation from alpha (HCP) to beta (BCC) phase in a zirconium alloy was revealed by the use of in-situ neutron diffraction during hot compression. The dynamic transformation was unexpectedly detected during isothermal compression at temperatures of 900°C and 950°C (alpha + beta two-phase region) and strain rates of 0.01 s⁻¹ and 0.001 s⁻¹, even though equilibrium two-phase states were achieved prior to the hot compression. Dynamic transformation was accompanied by diffusion of Sn from beta to alpha phase, which resulted in changes of lattice parameters and a characteristic microstructure of alpha grains. The lattice constant of alpha phase measured by the in-situ neutron diffraction increased during the hot compression, while the lattice constant of beta phase exhibited an initial increase and subsequent decrease during the hot compression. As a result, the magnitude of lattice (elastic) strain as well as stress (elastic stress, or phase stress) in alpha phase was found to become much greater than those in beta phase. According to an atomistic simulation, the Gibbs free energy of alpha phase increased with hydrostatic compressive pressure more evidently than that of beta phase. It could be concluded from such results that the occurrence of the dynamic transformation from alpha to beta is attributed to an increase in the Gibbs free energy of alpha phase relative to beta phase owing to the difference in the phase stress; i.e., the larger lattice distortion made alpha phase thermodynamically more unstable than beta phase. The present result suggests that deformation of two-phase materials can dynamically make Gibbs free energy of plastically harder phase higher than that of the softer phase through increasing elastic energy in the harder phase, which might lead to dynamic transformation from harder phase to softer phase

    Revision of Solar Spicule Classification

    Full text link
    Solar spicules are the fundamental magnetic structures in the chromosphere and considered to play a key role in channelling the chromosphere and corona. Recently, it was suggested by De Pontieu et al. that there were two types of spicules with very different dynamic properties, which were detected by space- time plot technique in the Ca ii H line (3968 A) wavelength from Hinode/SOT observations. 'Type I' spicule, with a 3-7 minute lifetime, undergoes a cycle of upward and downward motion; in contrast, 'Type II' spicule fades away within dozens of seconds, without descending phase. We are motivated by the fact that for a spicule with complicated 3D motion, the space-time plot, which is made through a slit on a fixed position, could not match the spicule behavior all the time and might lose its real life story. By revisiting the same data sets, we identify and trace 105 and 102 spicules in quiet sun (QS) and coronal hole (CH), respectively, and obtain their statistical dynamic properties. First, we have not found a single convincing example of 'Type II' spicules. Secondly, more than 60% of the identified spicules in each region show a complete cycle, i.e., majority spicules are 'Type I'. Thirdly, the lifetime of spicules in QS and CH are 148 s and 112 s, respectively, but there is no fundamental lifetime difference between the spicules in QS and CH reported earlier. Therefore, the suggestion of coronal heating by 'Type II' spicules should be taken with cautions. Subject headings: Sun: chromosphere Sun:transition region Sun:coronaComment: accepted by Ap

    Oral Clostridium butyricum on mice endometritis through uterine microbiome and metabolic alternations

    Get PDF
    Endometritis occurs frequently in humans and animals, which can negatively affect fertility and cause preterm parturition syndrome. Orally administered Clostridium butyricum, a butyrate-producing gram-positive anaerobe, exhibits anti-inflammatory effects. However, the precise mechanism by which Clostridium butyricum attenuates endometritis remains unclear. This in vivo study evaluated the anti-inflammatory effects of orally administered Clostridium butyricum on uterine tissues. In addition, we conducted uterine microbiome and lipid metabolome analyses to determine the underlying mechanisms. Female Balb/c mice were divided into the following four groups (n = 5–20): (1) mock group, (2) only operation group (mice only underwent operation to exposed uterine horns from the side), (3) control group (mice underwent the same operation with the operation group + perfusion of lipopolysaccharide solution from uterine horns), and (4) Clostridium butyricum administration group (mice underwent the same operation with the control group + oral Clostridium butyricum administration from days 0 to 9). Clostridium butyricum was administered via oral gavage. On day 10, we investigated protein expression, uterine microbiome, and lipid metabolism in uterine tissues. Consequently, orally administered Clostridium butyricum altered the uterine microbiome and induced proliferation of Lactobacillus and Limosilactobacillus species. The effects can contribute to show the anti-inflammatory effect through the interferon-β upregulation in uterine tissues. Additionally, oral Clostridium butyricum administration resulted in the upregulations of some lipid metabolites, such as ω-3 polyunsaturated fatty acid resolvin D5, in uterine tissues, and resolvin D5 showed anti-inflammatory effects. However, the orally administered Clostridium butyricum induced anti-inflammatory effect was attenuated with the deletion of G protein-coupled receptor 120 and 15-lipooxgenase inhibition. In conclusion, Clostridium butyricum in the gut has anti-inflammatory effects on uterine tissues through alterations in the uterine microbiome and lipid metabolism. This study revealed a gut-uterus axis mechanism and provided insights into the treatment and prophylaxis of endometritis

    Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity

    Get PDF
    • Impacts of rising atmospheric CO2 concentrations on plant disease have received much attention recently. Nonetheless, evidence about the direct mechanisms by which CO2 shapes plant immunity remains fragmented and controversial. Furthermore, the impact of sub-ambient CO2 concentrations, which plants have experienced repeatedly over the past 800,000 years, has been largely overlooked. • A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling, was implemented to determine development-independent effects of sub-ambient CO2 (saCO2) and elevated CO2 (eCO2) on Arabidopsis immunity. • Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO2 and enhanced at eCO2. This CO2-dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO2 and saCO2. Although eCO2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO2, suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO2 corresponded to a loss of resistance in glycolate oxidase (GOX) mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO2. • By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO2 shapes plant immunity and discuss their evolutionary significance

    Sex differences in the regulation of porcine coronary artery tone by perivascular adipose tissue: a role of adiponectin?

    Get PDF
    Background and Purpose- As there is sexual dimorphism in the regulation of vascular tone, the aim of this present study was to determine whether there are sex differences in perivascular adipose tissue (PVAT) - mediated regulation of the porcine coronary artery (PCA) tone. Experimental Approach- Isometric tension recording system was used to record changes in tone in PCAs. Western blot analysis was performed to examine the expression of adiponectin in PVAT and adiponectin receptors (adipo 1 receptor and adipo 2 receptor) and adiponectin binding protein (APPL1) in PCA. The level of adiponectin released from PVAT was measured using ELISA. Key Results- In the presence of adherent PVAT, contractions to the thromboxane mimetic U46619 and endothelin-1 were significantly reduced in PCAs from females, but not males. In PCAs pre-contracted with U46619, re-addition of PVAT caused relaxation in PCAs from females, but not males. This relaxant response in females was attenuated by combined inhibition of NO synthase (with L-NAME) and cyclooxygenase (with indomethacin). Pre-incubation with an anti-adiponectin antibody abolished the relaxant effects of PVAT. The adiponectin receptor agonist (adipoRon) produced a greater relaxation in PCAs from females compared to males. However, there was no difference in either expression or release of adiponectin from PVAT between sexes. Similarly, there was no difference in expression of adiponectin receptors or the adiponectin receptor adaptor protein APPL1 in PCAs. Conclusion and Implications- These findings demonstrate a clear sex difference in the regulation of coronary artery tone in response to adiponectin receptor stimulation, which may underlie the anticontractile effects of PVAT in females

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14
    corecore