277 research outputs found
Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2
The bandgap of MoS2 is highly strain-tunable which results in the modulation
of its electrical conductivity and manifests itself as the piezoresistive
effect while a piezoelectric effect was also observed in odd-layered MoS2 with
broken inversion symmetry. This coupling between electrical and mechanical
properties makes MoS2 a very promising material for nanoelectromechanical
systems (NEMS). Here we incorporate monolayer, bilayer and trilayer MoS2 in a
nanoelectromechanical membrane configuration. We detect strain-induced band gap
tuning via electrical conductivity measurements and demonstrate the emergence
of the piezoresistive effect in MoS2. Finite element method (FEM) simulations
are used to quantify the band gap change and to obtain a comprehensive picture
of the spatially varying bandgap profile on the membrane. The piezoresistive
gauge factor is calculated to be -148 +/- 19, -224 +/- 19 and -43.5 +/- 11 for
monolayer, bilayer and trilayer MoS2 respectively which is comparable to
state-of-the-art silicon strain sensors and two orders of magnitude higher than
in strain sensors based on suspended graphene. Controllable modulation of
resistivity in 2D nanomaterials using strain-induced bandgap tuning offers a
novel approach for implementing an important class of NEMS transducers,
flexible and wearable electronics, tuneable photovoltaics and photodetection.Comment: 12 pages, 4 figures in Nano Letters (2015
Electromechanical Oscillations in Bilayer Graphene
Nanoelectromechanical systems (NEMS) constitute a class of devices lying at
the interface between fundamental research and technological applications.
Integrating novel materials such as graphene into NEMS allows studying their
mechanical and electromechanical characteristics at the nanoscale and
addressing fundamental questions such as electron-phonon interaction and
bandgap engineering. In this work, we integrate single and bilayer graphene
into NEMS and probe the interplay between their mechanical and electrical
properties. We show that the deflection of monolayer graphene nanoribbons
results in a linear increase in their electrical resistance. Surprisingly, we
observe oscillations in the electromechanical response of bilayer graphene. The
proposed theoretical model suggests that these oscillations arise from quantum
mechanical interference taking place due to the lateral displacement of
graphene layers with respect to each other. Our work shows that bilayer
graphene conceals unexpectedly rich and novel physics with promising potential
in NEMS-based applications.Comment: First three authors contributed equall
Phase diagram of the two-dimensional Hubbard-Holstein model
The electron\u2013electron and electron\u2013phonon interactions play an important role in correlated materials, being key features for spin, charge and pair correlations. Thus, here we investigate their effects in strongly correlated systems by performing unbiased quantum Monte Carlo simulations in the square lattice Hubbard-Holstein model at half-filling. We study the competition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW), establishing its very rich phase diagram. In the region between AFM and CDW phases, we have found an enhancement of superconducting pairing correlations, favouring (nonlocal) s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the emergence of CDW in the pure Holstein model case
2D MoTe2 nanosheets by atomic layer deposition: Excellent photo-electrocatalytic properties
Herein, the synthesis of MoTe2 nanosheets by means of Atomic Layer Deposition (ALD) is demonstrated for the first time. ALD enables tight control over the thickness and the composition of the deposited material, which are highly appealing features for the nanostructure fabrication. The growth of ALD MoTe2 was studied on substrates of different nature, including TiO2 nanotube (TNT) layers used as active supporting material for fabricating hierarchical nanotubular MoTe2/TNT heterostructure. The combination of newly synthesized Te precursor with commercial Mo precursor rendered the growth of 2D flaky MoTe2 nanosheets mostly out-of-plane oriented. The as-deposited MoTe2 was extensively characterized by different techniques which confirmed its chemical composition and revealed 2D flaky nano-crystalline structures. In parallel, MoTe2/TNT layers were employed to explore and exploit both photoand electrocatalytic properties. The synergy stemming from the out-of-plane MoTe2 nanosheet orientation, with an optimized amount of catalytic active edges, and the fast electron transfer through 1D TiO2 nanotubes triggered the catalytic properties for both, organic pollutant degradation and hydrogen evolution reaction (HER) applications. Remarkably, the application of a cathodic potential originated a gradual HER electrochemical activation over time driving to a higher current density and an overpotential drop. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/
Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond
2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe
Nano-electromechanical systems based on ultra-thin semiconductors
Nowadays, the interest in 2D materials has gone far beyond graphene. Specially, monolayers of transition metal dichalcogenides (TMDs) offer a broad spectrum of electronic and optical properties, and show the potential to revolutionize the electronics industry. The promising electronic properties of 2D semiconductors combined with their mechanical strength and flexibility, makes them ideal candidates for nanoelectromechanical systems
(NEMS). This thesis focuses on realizing NEMS based on graphene and MoS2, which is one of the most appealing TMDs.
First, we present the realization of graphene NEMS by fabricating single and bilayer graphene transistors featuring a doubly clamped suspended channel. The electromechanical response of monolayer graphene nanoribbons show a strain-induced increase in their electrical resistance, making it possible to estimate an upper limit for the piezoresistive gauge factor. Surprisingly, we observe oscillations in the electromechanical response of bilayer graphene. Our numerical simulations indicate that these oscillations arise from quantum mechanical interference in the transition region induced by sliding of the two graphene layers with respect to each other. Our results report on the rare observation of room temperature electronic interference in bilayer graphene.
Next, we investigate the static electromechanical response of atomically thin MoS2. MoS2 exhibits high youngĂąs modulus and fracture strength. Furthermore, the bandgap of MoS2 is highly strain-tunable. This coupling between electrical and mechanical properties makes MoS2 a promising material for NEMS. Here we incorporate monolayer, bilayer and trilayer MoS2 in a suspended membrane configuration with the electrodes acting as mechanical clamps. Strain-induced bandgap tuning is detected via electrical conductivity measurements and the emergence of the piezoresistive effect in MoS2 is demonstrated. We observe a reversible bandgap modulation in atomically thin MoS2 membranes with a thickness dependent modulation rate. Finite element method (FEM) simulations are used to obtain the spatially varying bandgap profile on the membrane and to quantify the rate of bandgap change. The piezoresistive gauge factor is calculated for single layer, bilayer and trilayer MoS2. Our results reveal that monolayer and bilayer MoS2 show a piezoresistive effect which is comparable to the state-of-the-art silicon strain sensors and two orders of magnitude higher than in graphene.
Finally, we present the investigation of MoS2 NEMS resonators working in the VHF range and featuring piezoresistive transduction. The atomic thickness of monolayer MoS2 places it as a promising candidate for miniaturization of electromechanical devices to the limits of vertical scaling. While the small mass of MoS2 leads to an increased resonant frequency and a higher mass sensitivity, the presence of piezoresistivity offers a transduction mechanism in addition to the traditional capacitive transduction. Operating in the tension-dominated regime, monolayer MoS2 NEMS resonators not only allow tunability of the resonant frequency using an external voltage, but also show the strain-induced enhancement of their dynamic range. Furthermore, the resonators are driven into the nonlinear regime allowing the study of nonlinear effects. This work sheds light on the potential of TMD based NEMS as ultra-low power switches, sensors and resonators for applications in RF range
Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators
Excellent mechanical properties and the presence of piezoresistivity make single layers of transition metal dichalcogenides (TMDCs) viable candidates for integration in nanoelectromechanical systems (NEMS). We report on the realization of electromechanical resonators based on single-layer MoS2 with both piezoresistive and capacitive transduction schemes. Operating in the ultimate limit of membrane thickness, the resonant frequency of MoS2 resonators is primarily defined by the built-in mechanical tension and is in the very high frequency range. Using electrostatic interaction with a gate electrode, we tune the resonant frequency, allowing for the extraction of resonator parameters such as mass density and built-in strain. Furthermore, we study the origins of nonlinear dynamic response at high driving force. The results shed light on the potential of TMDC-based NEMS for the investigation of nanoscale mechanical effects at the limits of vertical downscaling and applications such as resonators for RF-communications, force and mass sensors
2D transition metal dichalcogenides
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties
- âŠ