9 research outputs found

    Effects of supplemental octanoate on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammation-related genes expression of large yellow croaker (Larimichthys crocea) fed with high soybean oil diet

    Get PDF
    Dietary high soybean oil (SO) levels might cause hepatic lipid deposition, induce oxidative stress and inflammatory response in aquatic animals, while octanoate (OCT) is beneficial to metabolism and health in mammals. However, the effect of OCT has been studied rarely in aquatic animals. In this study, a 10-week feeding trial was conducted to investigate the effect of supplemental OCT on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammatory response of large yellow croaker (Larimichthys crocea) fed with high SO levels diet. The negative control diet contained 7% fish oil (FO), while the positive control diet contained 7% SO. The other four experimental diets were supplemented with 0.7, 2.1, 6.3 and 18.9 g/kg sodium octanoate (OCT) based on the positive control diet. Results showed that OCT supplementation effectively reduced the hepatic crude lipid, triglyceride (TG), total cholesterol (TC) and non-esterified free fatty acids contents, and alleviated lipid accumulation caused by the SO diet. Meanwhile, OCT supplementation decreased the serum TG, TC, alanine transaminase, aspartate transaminase and low-density lipoprotein cholesterol levels, increased the serum high-density lipoprotein cholesterol level, improved the serum lipid profiles and alleviated hepatic injury. Furthermore, with the supplementation of OCT, the mRNA expression of genes related to lipogenesis (acc1, scd1, fas, srebp1, dgat1 and cebpα) and fatty acid (FA) transport (fabp3, fatp and cd36) were down-regulated, while the mRNA expression of genes related to lipolysis (atgl, hsl and lpl) and FA β-oxidation (cpt1 and mcad) were up-regulated. Besides that, dietary OCT increased the total antioxidant capacity, activities of peroxidase, catalase and superoxide dismutase and the content of reduced glutathione, decreased the content of 8-hydroxy-deoxyguanosine and malondialdehyde and relieved hepatic oxidative stress. Supplementation of 0.7 and 2.1 g/kg OCT down-regulated the mRNA expression of genes related to pro-inflammatory cytokines (tnfα, il1β and ifnγ), and suppressed hepatic inflammatory response. In conclusion, supplementation with 0.7-2.1 g/kg OCT could reduce hepatic lipid accumulation, relieve oxidative stress and regulate inflammatory response in large yellow croaker fed the diet with high SO levels, providing a new way to alleviate the hepatic fat deposition in aquatic animals

    Influence of Temperature on Denitrification and Microbial Community Structure and Diversity: A Laboratory Study on Nitrate Removal from Groundwater

    No full text
    Temperature is an extremely important environmental condition in the application of microbial denitrification for nitrate removal from groundwater. Understanding the nitrate removal efficiency of groundwater and the diversity, composition, and structure of microbial communities under different temperature conditions is of great significance for effective mitigation of groundwater nitrate pollution. This study investigated the effects of temperature on denitrification at 15 °C, 25 °C, 40 °C, and 45 °C. Moreover, the characteristics of microbial community structure and diversity were analyzed by combining high-throughput sequencing and polymerase chain reaction methods in order to fully clarify the denitrification efficiency under different temperature conditions. According to laboratory batch experiments and the findings of previous research, glucose was set as the carbon source and changes in “three nitrogen” indicators of the four temperature systems were mainly tested to clarify the effectiveness of nitrate removal. The maximum removal rates of nitrate nitrogen at 15 °C, 25 °C, 40 °C, and 45 °C were 44.05%, 87.03%, 99.26%, and 92.79%, respectively. Therefore, the most efficient nitrate removal can be achieved at 40℃. The Chao abundance indexes in the denitrification systems at 15 °C, 25 °C, 40 °C, and 45 °C were 1873, 352, 466, and 640, respectively. Therefore, the highest species richness was observed at 15 °C, but there were only a few dominant bacteria species. The composition of the bacterial community and the most dominant phylum varied at different temperatures. Among them, Gammaproteobacteria in Proteobacteria phylum plays an important role in the degradation of nitrate nitrogen. The relative abundance of Gammaproteobacteria at 15 °C, 25 °C, 40 °C, and 45 °C were 25.32%, 66.56%, 72.83%, and 3.47%. Tolumonas belongs to Gammaproteobacteria. The relative abundance of Tolumonas at 15 °C, 25 °C, 40 °C, and 45 °C were 9.41%, 65.47%, 62.49%, and 0.03%, respectively. The results of this study show that different temperature conditions affect the diversity, composition, and structure of the microbial community, thereby affecting the efficiency of denitrification for nitrate removal from groundwater

    Inhibition of Hypoxia-Induced Retinal Angiogenesis by Specnuezhenide, an Effective Constituent of Ligustrum lucidum Ait., through Suppression of the HIF-1α/VEGF Signaling Pathway

    No full text
    Specnuezhenide (SPN), one of the main ingredients of Chinese medicine “Nü-zhen-zi”, has anti-angiogenic and vision improvement effects. However, studies of its effect on retinal neovascularization are limited so far. In the present study, we established a vascular endothelial growth factor A (VEGFA) secretion model of human acute retinal pigment epithelial-19 (ARPE-19) cells by exposure of 150 μM CoCl2 to the cells and determined the VEGFA concentrations, the mRNA expressions of VEGFA, hypoxia inducible factor-1α (HIF-1α) & prolyl hydroxylases 2 (PHD-2), and the protein expressions of HIF-1α and PHD-2 after treatment of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1, 1.0 μg/mL) or SPN (0.2, 1.0 and 5.0 μg/mL). Furthermore, rat pups with retinopathy were treated with SPN (5.0 and 10.0 mg/kg) in an 80% oxygen atmosphere and the retinal avascular areas were assessed through visualization using infusion of ADPase and H&E stains. The results showed that SPN inhibited VEGFA secretion by ARPE-19 cells under hypoxia condition, down-regulated the mRNA expressions of VEGFA and PHD-2 slightly, and the protein expressions of VEGFA, HIF-1α and PHD-2 significantly in vitro. SPN also prevented hypoxia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy in vivo. These results indicate that SPN ameliorates retinal neovascularization through inhibition of HIF-1α/VEGF signaling pathway. Therefore, SPN has the potential to be developed as an agent for the prevention and treatment of diabetic retinopathy

    Brain gray and white matter abnormalities in preterm-born adolescents: A meta-analysis of voxel-based morphometry studies

    No full text
    <div><p>Introduction</p><p>Studies using voxel-based morphometry report variable and inconsistent abnormalities of gray matter volume (GMV) and white matter volume (WMV) in brains of preterm-born adolescents (PBA). In such circumstances a meta-analysis can help identify the most prominent and consistent abnormalities.</p><p>Method</p><p>We identified 9 eligible studies by systematic search of the literature up to October 2017. We used Seed-based d Mapping to analyze GMV and WMV alterations between PBA and healthy controls.</p><p>Results</p><p>In the GMV meta-analysis, PBA compared to healthy controls showed: increased GMV in left cuneus cortex, left superior frontal gyrus, and right anterior cingulate cortex; decreased GMV in bilateral inferior temporal gyrus (ITG), left superior frontal gyrus, and right caudate nucleus. In the WMV meta-analysis, PBA showed: increased WMV in right fusiform gyrus and precuneus; decreased WMV in bilateral ITG, and right inferior frontal gyrus. In meta-regression analysis, the percentage of male PBA negatively correlated with decreased GMV of bilateral ITG.</p><p>Interpretation</p><p>PBA show widespread GMV and WMV alterations in the default mode network, visual recognition network, and salience network. These changes may be causally relevant to socialization difficulties and cognitive impairments. The meta-regression results perhaps reveal the structural underpinning of the cognition-related sex differences in PBA.</p></div
    corecore