131 research outputs found
Effect of sorting and feeding management practices on finished lamb shrink loss
To determine the effect of common pre-marketing sorting and feeding management practices on finished lamb shrink loss
Refining pulsar radio emission due to streaming instabilities: Linear theory and PIC simulations in a wide parameter range
Several important mechanisms that explain the coherent pulsar radio emission
rely on streaming (or beam) instabilities of the relativistic pair plasma in a
pulsar magnetosphere. However, it is still not clear whether a streaming
instability by itself is sufficient to explain the observed coherent radio
emission. Due to the relativistic conditions that are present in the pulsar
magnetosphere, kinetic instabilities could be quenched. Moreover, uncertainties
regarding specific model-dependent parameters impede conclusions concerning
this question. We aim to constrain the possible parameter range for which a
streaming instability could lead to pulsar radio emission, focusing on the
transition between strong and weak beam models, beam drift speed, and
temperature dependence of the beam and background plasma components. We solve a
linear relativistic kinetic dispersion relation appropriate for pulsar
conditions in a more general way than in previous studies, considering a wider
parameter range. The analytical results are validated by comparison with
relativistic kinetic particle-in-cell (PIC) numerical simulations. We obtain
growth rates as a function of background and beam densities, temperatures, and
streaming velocities while finding a remarkable agreement of the linear
dispersion predictions and numerical simulation results in a wide parameter
range. Monotonous growth is found when increasing the beam-to-background
density ratio. With growing beam velocity, the growth rates firstly increase,
reach a maximum and decrease again for higher beam velocities. A monotonous
dependence on the plasma temperatures is found, manifesting in an asymptotic
behaviour when reaching colder temperatures. We show that the generated waves
are phase-coherent by calculating the fractional bandwidth. We provide an
explicit parameter range of plasma conditions for efficient pulsar radio
emission.Comment: 15 pages, 7 figures. An abridged version of the abstract is shown
here. Accepted in A&
Radio Emission by Soliton Formation in Relativistically Hot Streaming Pulsar Pair Plasmas
A number of possible pulsar radio emission mechanisms are based on streaming
instabilities in relativistically hot electron-positron pair plasmas. At
saturation the unstable waves can form, in principle, stable solitary waves
which could emit the observed intense radio signals. We searched for the proper
plasma parameters which would lead to the formation of solitons, investigated
their properties and dynamics as well as the resulting oscillations of
electrons and positrons possibly leading to radio wave emission. We utilized a
one-dimensional version of the relativistic Particle-in-Cell code ACRONYM
initialized with an appropriately parameterized one-dimensional
Maxwell-J\"uttner velocity space particle distribution to study the evolution
of the resulting streaming instability in a pulsar pair plasma. We found that
strong electrostatic superluminal L-mode solitons are formed for plasmas with
normalized inverse temperatures or relative beam drift speeds
with Lorentz factors . The parameters of the solitons fulfill the
wave emission conditions. For appropriate pulsar parameters the resulting
energy densities of superluminal solitons can reach up to
ergcm, while those of subluminal solitons reach only up to ergcm. Estimated energy densities of up to ergcm suffice to explain pulsar nanoshots.Comment: 20 pages, 15 figures, 1 tabl
ISRM Suggested Method for Laboratory Acoustic Emission Monitoring
Acoustic emission (AE) is defined as high-frequency elastic waves emitted from defects such as small cracks (microcracks) within a material when stressed, typically in the laboratory. AE is a similar phenomenon to microseismicity (MS), as MS is induced by fracture of rock at an engineering scale (e.g., rockbursts in mines), that is, in the field. Thus, seismic monitoring can be applied to a wide variety of rock engineering problems, and AE is a powerful method to investigate processes of rock fracture by detecting microcracks prior to macroscopic failure and by tracking crack propagation.
A basic approach involves using a single channel of data acquisition, such as with a digital oscilloscope, and analyzing the number and rate of AE events. Perhaps the most valuable information from AE is the source location, which requires recording the waveform at several sensors and determining arrival times at each. Thus, investing in a multichannel data acquisition system provides the means to monitor dynamics of the fracturing process.
The purpose of this suggested method is to describe the experimental setup and devices used to monitor AE in laboratory testing of rock. The instrumentation includes the AE sensor, preamplifier, frequency (noise) filter, main amplifier, AE rate counter, and A/D (analog-to-digital) recorder, to provide fundamental knowledge on material and specimen behavior in laboratory experiments. When considering in situ seismic monitoring, the reader is referred to the relevant ISRM suggested method specifically addressing that topic (Xiao et al. 2016)
Lecithin : cholesterol acyltransferase: symposium on 50 years of biomedical research from its discovery to latest findings
LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.Peer reviewe
P2X7 receptors induce degranulation in human mast cells.
Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated
The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during<i> Caenorhabditis elegans</i> Meiosis
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis
Tests of light-lepton universality in angular asymmetries of decays
We present the first comprehensive tests of light-lepton universality in the
angular distributions of semileptonic \Bz-meson decays to charged spin-1
charmed mesons. We measure five angular-asymmetry observables as functions of
the decay recoil that are sensitive to lepton-universality-violating
contributions. We use events where one neutral \B is fully reconstructed in
\PUpsilonFourS{} \to\B\overline{B} decays in data corresponding to \lumion
integrated luminosity from electron-positron collisions collected with the
\belletwo detector. We find no significant deviation from the standard model
expectations
Measurement of the branching fraction and asymmetry of decays using pairs in Belle II data
We report measurements of the branching fraction and asymmetry in
decays reconstructed at Belle II in an
electron-positron collision sample containing
pairs. We measure a branching fraction \mathcal{B}(\Bpipi) =
(1.38 \pm 0.27 \pm 0.22) \times 10^{-6} and a asymmetry \Acp(\Bpipi)
= 0.14 \pm 0.46 \pm 0.07, where the first uncertainty is statistical and the
second is systematic
- …