94 research outputs found

    Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos

    Get PDF
    PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes, ARGFX, CPHX1, CPHX2, DPRX, DUXA, DUXB, NOBOX, TPRX1 and TPRX2, were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1, CPHX2, ARGFX) or repressors (DPRX, DUXA, TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development.Peer reviewe

    Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts

    Get PDF
    Purpose: Milk provides a significant source of calcium, protein, vitamins and other minerals to Western populations throughout life. Due to its widespread use, the metabolic and health impact of milk consumption warrants further investigation and biomarkers would aid epidemiological studies.  Methods: Milk intake assessed by a validated food frequency questionnaire was analyzed against fasting blood metabolomic profiles from two metabolomic platforms in females from the TwinsUK cohort (n = 3559). The top metabolites were then replicated in two independent populations (EGCUT, n = 1109 and KORA, n = 1593), and the results from all cohorts were meta-analyzed.  Results: Four metabolites were significantly associated with milk intake in the TwinsUK cohort after adjustment for multiple testing (P < 8.08 × 10−5) and covariates (BMI, age, batch effects, family relatedness and dietary covariates) and replicated in the independent cohorts. Among the metabolites identified, the carnitine metabolite trimethyl-N-aminovalerate (ÎČ = 0.012, SE = 0.002, P = 2.98 × 10−12) and the nucleotide uridine (ÎČ = 0.004, SE = 0.001, P = 9.86 × 10−6) were the strongest novel predictive biomarkers from the non-targeted platform. Notably, the association between trimethyl-N-aminovalerate and milk intake was significant in a group of MZ twins discordant for milk intake (ÎČ = 0.050, SE = 0.015, P = 7.53 × 10−4) and validated in the urine of 236 UK twins (ÎČ = 0.091, SE = 0.032, P = 0.004). Two metabolites from the targeted platform, hydroxysphingomyelin C14:1 (ÎČ = 0.034, SE = 0.005, P = 9.75 × 10−14) and diacylphosphatidylcholine C28:1 (ÎČ = 0.034, SE = 0.004, P = 4.53 × 10−16), were also replicated.  Conclusions: We identified and replicated in independent populations four novel biomarkers of milk intake: trimethyl-N-aminovalerate, uridine, hydroxysphingomyelin C14:1 and diacylphosphatidylcholine C28:1. Together, these metabolites have potential to objectively examine and refine milk-disease associations

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Long-lasting T-cell response to SARS-CoV-2 antigens after vaccination-a prospective cohort study of HCWs working with COVID-19 patients

    No full text
    Background: Vaccination against SARS-CoV-2 reduces the risk of hospitalisation and death, but vaccine-induced IgG antibodies against the spike protein (IgG S) decline over time. Less is known about the nature of the vaccine-induced T-cell response to SARS-CoV-2 antigens. Methods: IgG antibodies against nucleocapsid protein (IgG N), IgG S, and T-cell response towards SARS-CoV-2 antigens were determined in samples taken between November 2020 and November 2021 from a cohort of healthcare workers at an Infectious Diseases Department. RT-PCR screening for SARS-CoV-2 was encouraged once every four weeks in addition to testing when symptomatic or identified through contact tracing. Vaccination data were collected at the end of the study. Results: At inclusion, T-cell response to SARS-CoV-2 antigens was found in 10/15 (66.7%) of participants with a previous/current COVID-19 infection and in 9/54 (16.7%) of participants with no prior/current history of COVID-19 infection. All participants with complete follow-up (n = 59) received two doses of a SARS-CoV-2 vaccine during the study. All participants demonstrated detectable IgG (S) antibodies at the end of the study, in median 278 days (IQR 112) after the second vaccine dose. All but four participants displayed T-cell responses towards SARS-CoV-2 antigens. IgG S antibody levels correlated with time since the second vaccine dose. In addition, previous COVID-19 infection and the strength of the S1 T-cell response correlated with IgG S antibody levels. However, no correlation was demonstrated between the strength of the T-cell response and time since the second vaccine dose. Conclusion: COVID-19 vaccination induces robust T-cell responses that remain for at least nine months
    • 

    corecore