685 research outputs found

    Exploring objective measures for assessing team performance in healthcare: an interview study.

    Get PDF
    INTRODUCTION Effective teamwork plays a critical role in achieving high-performance outcomes in healthcare. Consequently, conducting a comprehensive assessment of team performance is essential for providing meaningful feedback during team trainings and enabling comparisons in scientific studies. However, traditional methods like self-reports or behavior observations have limitations such as susceptibility to bias or being resource consuming. To overcome these limitations and gain a more comprehensive understanding of team processes and performance, the assessment of objective measures, such as physiological parameters, can be valuable. These objective measures can complement traditional methods and provide a more holistic view of team performance. The aim of this study was to explore the potential of the use of objective measures for evaluating team performance for research and training purposes. For this, experts in the field of research and medical simulation training were interviewed to gather their opinions, ideas, and concerns regarding this novel approach. METHODS A total of 34 medical and research experts participated in this exploratory qualitative study, engaging in semi-structured interviews. During the interview, experts were asked for (a) their opinion on measuring team performance with objective measures, (b) their ideas concerning potential objective measures suitable for measuring team performance of healthcare teams, and (c) their concerns regarding the use of objective measures for evaluating team performance. During data analysis responses were categorized per question. RESULTS The findings from the 34 interviews revealed a predominantly positive reception of the idea of utilizing objective measures for evaluating team performance. However, the experts reported limited experience in actively incorporating objective measures into their training and research. Nevertheless, they identified various potential objective measures, including acoustical, visual, physiological, and endocrinological measures and a time layer. Concerns were raised regarding feasibility, complexity, cost, and privacy issues associated with the use of objective measures. DISCUSSION The study highlights the opportunities and challenges associated with employing objective measures to assess healthcare team performance. It particularly emphasizes the concerns expressed by medical simulation experts and team researchers, providing valuable insights for developers, trainers, researchers, and healthcare professionals involved in the design, planning or utilization of objective measures in team training or research

    Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9

    Get PDF
    Debris discs which orbit white dwarfs are signatures of remnant planetary systems. We present 12 yr of optical spectroscopy of the metal-polluted white dwarf SDSS J1228+1040, which shows a steady variation in the morphology of the 8600 Å Ca II triplet line profiles from the gaseous component of its debris disc. We identify additional emission lines of O I, Mg I, Mg II, Fe II and Ca II in the deep co-added spectra. These emission features (including Ca H & K) exhibit a wide range in strength and morphology with respect to each other and to the Ca II triplet, indicating different intensity distributions of these ionic species within the disc. Using Doppler tomography, we show that the evolution of the Ca II triplet profile can be interpreted as the precession of a fixed emission pattern with a period in the range 24–30 yr. The Ca II line profiles vary on time-scales that are broadly consistent with general relativistic precession of the debris disc

    Stellar archaeology with Gaia: the Galactic white dwarf population

    Full text link
    Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous scientific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.Comment: Summary of a talk at the 'Multi-Object Spectroscopy in the Next Decade' conference in La Palma, March 2015, to be published in ASP Conference Series (editors Ian Skillen & Scott Trager

    The age–metallicity relation in the solar neighbourhood from a pilot sample of white dwarf–main sequence binaries

    Get PDF
    The age–metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white-dwarf–main-sequence (WDMS) binaries. White dwarfs are ‘natural’ clocks and can be used to derive accurate ages. Metallicities can be obtained from the main-sequence companions. Since the progenitors of white dwarfs and the main-sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between age and metallicity at young and intermediate age

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Fast spectrophotometry of WD 1145+017

    Get PDF
    WD 1145+017 is currently the only white dwarf known to exhibit periodic transits of planetary debris as well as absorption lines from circumstellar gas. We present the first simultaneous fast optical spectrophotometry and broad-band photometry of the system, obtained with the Gran Telescopio Canarias (GTC) and the Liverpool Telescope (LT), respectively. The observations spanned 5.55.5 h, somewhat longer than the 4.54.5-h orbital period of the debris. Dividing the GTC spectrophotometry into five wavelength bands reveals no significant colour differences, confirming grey transits in the optical. We argue that absorption by an optically thick structure is a plausible alternative explanation for the achromatic nature of the transits that can allow the presence of small-sized (μ\sim\mum) particles. The longest (8787 min) and deepest (5050 per cent attenuation) transit recorded in our data exhibits a complex structure around minimum light that can be well modelled by multiple overlapping dust clouds. The strongest circumstellar absorption line, Fe II λ\lambda5169, significantly weakens during this transit, with its equivalent width reducing from a mean out-of-transit value of 22 \AA\ to 11 \AA\ in-transit, supporting spatial correlation between the circumstellar gas and dust. Finally, we made use of the Gaia Data Release 2 and archival photometry to determine the white dwarf parameters. Adopting a helium-dominated atmosphere containing traces of hydrogen and metals, and a reddening E(BV)=0.01E(B-V)=0.01 we find Teff=15020±520T_\mathrm{eff}=15\,020 \pm 520 K, logg=8.07±0.07\log g=8.07\pm0.07, corresponding to M_\mathrm{WD}=0.63\pm0.05\ \mbox{\mathrm{M}_{\odot}} and a cooling age of 224±30224\pm30 Myr.Comment: 13 pages, 9 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (2018 Aug 22

    IGAPS: the merged IPHAS and UVEX optical surveys of the northern Galactic plane

    Get PDF
    The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band Ha, g, and URGO. The IGAPS footprint fills the Galactic coordinate range, |b| 5s confidence).Peer ReviewedPostprint (published version

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure

    Preliminary Target Selection for the DESI Milky Way Survey (MWS)

    Get PDF
    The DESI Milky Way Survey (MWS) will observe \ge8 million stars between 16<r<1916 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxy's 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public
    corecore