96 research outputs found

    Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    Get PDF
    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of polystyrene and poly(l-lactic acid) with different micro/nanotopographies were obtained from smooth surfaces using a simple phase-separation based method. Total protein was quantified and showed a less adsorption of bovine serum albumin onto rough surfaces as compared to smooth surfaces of the same material. The mouse osteoblastic MC3T3-E1 cell line and primary bovine articular chondrocytes were used to study cell attachment and proliferation. Cells attached and proliferate better in the smooth surfaces. The superhydrophobic surfaces allowed cells to adhere but inhibited their proliferation. This study indicates that surface wettability, rather than polymer type or the topography of the superhydrophobic surfaces, is a critical factor in determining cell behavior

    Development of a novel cell encapsulation system based on natural origin polymers for tissue engineering applications

    Get PDF
    Cells microencapsulated in biocompatible semi-permeable polymeric membranes are effective as cell delivery systems while protecting the host against immune responses. In this study, cell encapsulation membranes were prepared based on carrageenan and alginate, two natural cationic polymers. Different formulations/conditions were explored to optimize the microcapsules which were characterized with respect to their morphology, mechanical stability, and cytotoxicity. Spherical-shaped microcapsules were obtained from all the polymeric systems. The iota-carrageenan/sodium alginate microcapsules exhibited the best stability and permeability, and therefore, these were selected for the cell encapsulation. These capsules provided an environment that supported cell proliferation and have the potential for tissue engineering as well as other cell-based therapy applications.One of the authors (SML) acknowledges the support of the Programme Alssan-the European Union Programme of High Level Scholarships for Latin America (scholarship no. E04M041362CO). This work was partially supported by the European STREP HIPPOCRATES (NMP3-CT-2003-505758) and by the Fundacao para a Ciencia e Tecnologia (project PTDC/QUI/68804/2006) and carried out under the scope of European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility

    Get PDF
    Advances in synthetic routes to chemically modify natural macromolecules such as polysaccharides and proteins have allowed designing functional hydrogels able to tackle current challenges in the biomedical field. Hydrogels are hydrophilic three-dimensional systems able to absorb or retain a large volume of water, prepared from a low percentage of precursor macromolecules. The typical fragile elastic structure of common hydrogel formulations often limits their usage. Three main fabrication strategies involving several compounds or multimodified materials known as double networks, dual-crosslinked networks, and interpenetrating networks have been explored to impart mechanical strength to hydrogels. Widely investigated for synthetic polymers, these approaches allow obtaining added-value hydrogels with a large spectrum of mechanical properties. Advances in the development of such hydrogels with biomacromolecules as main constituent materials have enabled the fabrication of hydrogels with improved key properties for medical use, including biocompatibility, controlled release of active substances and tailored biodegradability, while exploring sustainable sources. This review describes recent advances in the use of proteins, as well as natural and semi-synthetic polymers for the fabrication of hydrogels for biomedical applications. Structures processed via double network, dual-crosslinked, or interpenetrating network strategies are reviewed, and emphasis is given to the type of chemical modifications and reactions, as well as the covalent and non-covalent interactions/bonds involved in those mechanisms.publishe

    Characterization of poled and non-poled β-PVDF films using thermal analysis techniques

    Get PDF
    ß-poly(vinylidene fluoride)—ß-PVDF—exhibits ferroelectric properties due to the special arrangement of the chain units in the crystalline phase. The ferroelectric phase can be optimised by poling the original stretched film, that tends to align the randomly organised crystallites against the applied field. In this work, polarised and non-polarised ß-PVDF from the same batch are characterised by mechanical tests and a series of thermal analysis techniques, including DMA, TMA and DSC. The films exhibit mechanical anisotropy, and in the longitudinal direction the poled film presents larger mechanical properties, due to the higher structural organisation. Poled and non-poled show similar crystallinity levels but the melting temperature probed by DSC is higher for the non-poled film; for both films the melting peak exhibits a complex shape, indicating a heterogeneous crystalline organization. Two relaxation processes were found (ß and alpha_c) by dynamic mechanical analysis (DMA). The ß process, attributed to segmental motions in the amorphous phase, appears at the same temperature in both directions, but its intensity was found to be higher for the films tested in the longitudinal direction. For a given direction, the poled films exhibit lower peaks, due to the more organised amorphous structure. At higher temperature, the alpha_c-relaxationwas related to the contraction of the films in the longitudinal direction during heating, recorded by thermal mechanical analysis (TMA). The onset of molecular mobility within the crystalline phase allows for cooperative diffusion processes in the amorphous phase, generating the randomisation of the initially oriented structure.Fundação para a Ciência e Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI) - POCTI/CTM/33501/99

    443 CELLULAR AND BIOMECHANICAL SEGMENTAL CHARACTERIZATION OF HUMAN MENISCUS

    Get PDF

    Temperature-responsive nanomagnetic logic gates for cellular hyperthermia

    Get PDF
    While a continuous monitoring of temperature at the micro- and nano-scales is clearly of interest in many contexts, in many others a yes or no answer to the question "did the system locally exceed a certain temperature threshold?" can be more accurate and useful. This is the case of hard-to-detect events, such as those where temperature fluctuations above a defined threshold are shorter than the typical integration time of micro/nanothermometers and systems where fluctuations are rare events in a wide time frame. Herein we present the synthesis of iron selenide magnetic nanoplatelets and their use as non-volatile logic gates recording the near infrared (NIR) dose that triggers a temperature increase above a critical temperature around 42 °C in prostate cancer cell cultures. This use is based on the bistable behavior shown by the nanoplatelets below a magnetic phase transition at a tunable temperature T C and on their photothermal response under NIR light. The obtained results indicate that the synthesized nanomagnets may be employed in the future as both local heaters and temperature monitoring tools in a wide range of contexts involving systems which, as cells, are temperature-sensitive around the tunable T C

    An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine

    Get PDF
    A significant number of therapeutics derived from natural polymers and plants have been developed to replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties of aloe vera could be very useful in the creation of active wound dressing materials. The present work was undertaken to examine issues concerning structural features, topography, enzymatic degradation behavior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability and mechanical properties. A higher antibacterial potency was displayed by the blended membranes. Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound dressing materials.The authors acknowledge financial support from the Portuguese Foundation for Science and Technology (grants SFRH/BPD/45307/2008 and SFRH/BD/64601/2009), the "Fundo Social Europeu", and the "Programa Diferencial de Potencial Humano". This work was partially supported by the FEDER through POCTEP 0330_IBEROMARE_1_P

    Departure from the vogel behaviour in the glass transition region-thermally stimulated recovery, creep and dynamic mechanical analysis studies

    Get PDF
    In this work the study of the dynamics of the segmental motions close to Tg of a poly(methyl methacrylate), PMMA, network was analysed by distinct mechanical spectroscopy techniques. Three techniques were employed: dynamic mechanical analysis (DMA), creep and thermally stimulated recovery (TSR). The time–temperature superposition principle was applied to the DMA and creep results, and master curves were successfully constructed. A change from a Vogel to an Arrhenius behaviour was observed in these results. Above Tg it was found a distinct temperature dependence for the retardation times calculated from creep and the relaxation times calculated from DMA. This unexpected behaviour was attributed to the merging of the a and the b relaxations that occurs in PMMA systems. The apparent activation energies ðEaÞ were also calculated from DMA, creep and TSR experiments. Above Tg the Ea values obtained agreed very well for all the techniques. In addition, the fragility exhibited by this material was investigated by the mechanical spectroscopy techniques referred above and by differential scanning calorimetry (DSC). The obtained values of the fragility index m indicated that the PMMA network is a kinetically fragile system. The thermodynamic manifestation of the fragility was also analysed

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]
    corecore